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1 INTRODUCTION

Statistical inference for diffusion type processes satisfying stochastic differential equations

driven by Wiener processes has been studied earlier and a comprehensive survey of vari-

ous methods is given in Prakasa Rao (1999). There has been a recent interest to study

similar problems for stochastic processes driven by a fractional Brownian motion. Le Bre-

ton (1998) studied parameter estimation and filtering in a simple linear model driven by a

fractional Brownian motion. Kleptsyna and Le Breton (2002) studied parameter estimation

problems for fractional Ornstein-Uhlenbeck type process. This is a fractional analogue of

the Ornstein-Uhlenbeck process, that is, a continuous time first order autoregressive process

X = {Xt, t ≥ 0} which is the solution of a one-dimensional homogeneous linear stochastic

differential equation driven by a fractional Brownian motion (fBm) WH = {WH
t , t ≥ 0} with

Hurst parameter H ∈ [1/2, 1). Such a process is the unique Gaussian process satisfying the

linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1.1)

They investigated the problem of estimation of the parameters θ and σ2 based on the obser-

vation {Xs, 0 ≤ s ≤ T} and proved that the maximum likelihood estimator θ̂T is strongly

consistent as T → ∞. More general classes of stochastic processes satisfying linear stochastic
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differential equations driven by a fractional Brownian motion were studied and asymptotic

properties of the maximum likelihood and the Bayes estimators for parameters involved in

such processes were investigated in Prakasa Rao (2003, 2005). Prakasa Rao (2010) gives

a comprehensive discussion on problems of estimation for processes driven by a fractional

Brownian motion.

Brownian motion has been used traditionally as the driving force for modeling log returns

based on the movements of the stock prices in a share market. It has been noticed that there

might be long range dependence in the behaviour of movement of stock prices in a share

market and the log returns may possibly have heavy tailed distributions. It was suggested by

some researchers that the driving force for modeling of prices of movement may be modeled

by stochastic differential equations driven by a fractional Brownian motion of suitable Hurst

index H. Bjork and Hult (2005) and Kuznetsov (1999) observed that the use of fractional

Brownian motion as the driving force is not justifiable as it allows arbitrage opportunities

which is contrary to the fundamental ideas of rational market behaviour. In order to avoid

this problem, Cheridito (2000, 2003) suggested the use of a mixed fractional Brownian motion

as a suitable model to capture the fluctuations in stock price movement. The mixed fractional

Brownian motion (mfBm) is a Gaussian process that is a linear combination of the Brownian

motion and a fractional Brownian motion with Hurst index H. Cheridito (2001) proved that,

for H ∈ (3/4, 1) the mfBm is equivalent to a Brownian motion and hence modeling price

fluctuations via mfBm allows arbitrage-free market. Pricing geometric Asian options under

mixed fractional Brownian motion was studied in Prakasa Rao (2015b). Option procing

for processes driven by a mixed fractional Brownian motion with superimposed jumps was

discussed in Prakasa Rao (2015a). Rudomino-Dusyatska (2003) and more recently Prakasa

Rao (2009, 2017) investigated problems of statistical inference for processes modeled via

stochastic differential equations driven by a mixed fractional Brownian motion among others.

Mixed fractional Brownian models were also studied in Mishura (2008) and Prakasa Rao

(2010). Cai et al. (2016) presented a new approach via filtering for analysis of mixed

processes of type {Xt = Bt+Gt, 0 ≤ t ≤ T} where {Bt, 0 ≤ t ≤ T} is a Brownian motion and

{Gt, 0 ≤ t ≤ T} is an independent Gaussian process. Statistical Analysis of mixed fractional

Ornstein-Uhlenbebeck process was investigated in Chigansky and Kleptsyna (2015). Large

deviations for drift parameter estimator of mixed fractional Ornstein-Uhlenbeck process were

studied by Marushkevych (2016) following the ideas in Bercu et al. (2010) as an application

of the Gärtner -Ellis theorem (cf. Dembo and Zeitouni (1998)). His results deal with a limit
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theorem leading to an exact large deviation result involving a rate function for a specific

value of the parameter.

Our aim in this paper is to give an alternate approach for obtaining large deviation

probabilities, valid uniformly over compact sets of the parameter, for maximum likelihood

and Bayes estimators for the drift parameter involved in a fractional Ornstein-Uhlenbeck type

process driven by a mixed fractional Brownian motion following the ideas from Ibragimov

and Khasminskii (1981) and generalizing our earlier work in Mishra and Prakasa Rao (2006)

for processes driven by a fractional Brownian motion.

2 PRELIMINARIES

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions. The natural filtration

of a stochastic process is understood as the P -completion of the filtration generated by this

process. Let {Wt, t ≥ 0} be a standard Wiener process and WH = {WH
t , t ≥ 0} be an

independent normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1), that

is, a Gaussian process with continuous sample paths such that WH
0 = 0, E(WH

t ) = 0 and

E(WH
s W

H
t ) =

1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2.1)

Let

W̃H
t =Wt +WH

t , t ≥ 0.

The process {W̃H
t , t ≥ 0} is called the mixed fractional Brownian motion with Hurst index

H. We assume here after that Hurst index H is known. Following the results in Cheridito

(2001), it is known that the process W̃H is a semimartingale in its own filtration if and only

if either H = 1/2 or H ∈ (34 , 1]. We will assume here after that H ∈ (34 , 1].

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral

equation

Yt =

∫ t

0
C(s)ds+ W̃H

t , t ≥ 0(2.2)

where the process C = {C(t), t ≥ 0} is an (Ft)-adapted process. For convenience, we write

the above integral equation in the form of a stochastic differential equation

dYt = C(t)dt+ dW̃H
t , t ≥ 0(2.3)
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driven by the mixed fractional Brownian motion W̃H . Following the recent works by Cai et

al. (2016) and Chigansky and Kleptsyna (2015), one can construct an integral transforma-

tion that transforms the mixed fractional Brownian motion W̃H into a martingale MH . Let

gH(s, t) be the solution of the integro-differential equation

gH(s, t) +H
d

ds

∫ t

0
gH(r, t)|s− r|2H−1sign(s− r)dr = 1, 0 < s < t.(2.4)

Cai et al. (2016) proved that the process

MH
t =

∫ t

0
gH(s, t)dW̃H

s , t ≥ 0(2.5)

is a Gaussian martingale with quadratic variation

< MH >t=

∫ t

0
gH(s, t)ds, t ≥ 0.(2.6)

Furthermore the natural filtration of the martingale MH coincides with that of the mixed

fractional Brownian motion W̃H . Suppose that, for the martingale MH defined by the equa-

tion (2.5), the sample paths of the process {C(t), t ≥ 0} are smooth enough in the sense that

the process

Qt =
d

d < MH >t

∫ t

0
gH(s, t)C(s)ds, t ≥ 0(2.7)

is well defined in the sense that∫ t

0
Qsd < MH >s=

∫ t

0
gH(s, t)C(s)ds, t ≥ 0.

Define the process

Zt =

∫ t

0
gH(s, t)dYs, t ≥ 0.(2.8)

As a consequence of the results in Cai et al. (2016), it follows that the process Z is a

fundamental semimartingale associated with the process Y in the following sense.

Theorem 2.1: Let gH(s, t) be the solution of the equation (2.4). Define the process Z as

given in the equation (2.8). Then the following relations hold.

(i) The process Z is a semimartingale with the decomposition

Zt =

∫ t

0
Qsd < MH >s +M

H
t , t ≥ 0(2.9)

where MH is the martingale defined by the equation (2.5).
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(ii) The process Y admits the representation

Yt =

∫ t

0
ĝH(s, t)dZs, t ≥ 0(2.10)

where

ĝH(s, t) = 1− d

d < MH >s

∫ t

0
gH(r, s)dr.(2.11)

(iii) The natural filtrations (Yt) and (Zt) of the processes Y and Z respectively coincide.

Applying Corollary 2.9 in Cai et al. (2016), it follows that the probability measures

µY and µW̃H generated by the processes Y and W̃H on an interval [0, T ] are absolutely

continuous with respect to each other and the Radon-Nikodym derivative is given by

dµY
dµW̃H

(Y ) = exp[

∫ T

0
QsdZs −

1

2

∫ T

0
Q2

sd < MH >s](2.12)

which is also the likelihood function based on the observation {Ys, 0 ≤ s ≤ T}. Since the

filtrations generated by the processes Y and Z are the same, the information contained in

the families of σ-algebras (Yt) and (Zt) is the same and hence the problem of the estimation

of the parameters involved based on the observations {Ys, 0 ≤ s ≤ T} and {Zs, 0 ≤ s ≤ T}
are equivalent.

3 Maximum likelihood estimation and Bayes estimation

Let us consider the stochastic differential equation

dXt = θXtdt+ dW̃H
t , t ≥ 0;X0 = 0(3.1)

where θ ∈ Θ ⊂ R,W = {W̃H
t , t ≥ 0} is a mixed fractional Brownian motion with Hurst

parameter H. In other words X = {Xt, t ≥ 0} is a stochastic process satisfying the stochastic

integral equation

Xt = θ

∫ t

0
Xsds+ W̃H

t , t ≥ 0.(3.2)

Let

QH(t) =
d

d < MH >t

∫ t

0
gH(s, t)Xsds, t ≥ 0(3.3)

be well-defined where < MH >t and gH(t, s) are as defined earlier. Suppose the sample paths

of the process {QH(t), 0 ≤ t ≤ T} belong almost surely to L2([0, T ], d < MH >t). Define

Zt =

∫ t

0
gH(t, s)dXs, t ≥ 0.(3.4)
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Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

Zt = θ

∫ t

0
QH(s) d < MH >s +M

H
t(3.5)

where MH is the fundamental martingale defined earlier and the process X admits the

representation

Xt =

∫ t

0
ĝH(t, s) dZs(3.6)

where the function ĝH(t, s) is as defined by (2.11). Let P T
θ be the measure induced by the

process {Xt, 0 ≤ t ≤ T} when θ is the true parameter. Following Corollary 2.9 in in Cai et

al. (2015), we get that the Radon-Nikodym derivative of P T
θ with respect to P T

0 is given by

dP T
θ

dP T
0

= exp

[
θ

∫ T

0
QH(s) dZs −

1

2
θ2
∫ T

0
Q2

H(s)d < MH >s

]
.(3.7)

Maximum likelihood estimation

The problem of maximum likelihood estimation of the parameter θ is discussed in Klept-

syna and Le Breton (2002) for fractional Ornstein-Uhlenbeck type process and by Prakasa

Rao (2003, 2005) for more general processes. Let LT (θ) denote the Radon-Nikodym deriva-

tive
dPT

θ

dPT
0
. The maximum likelihood estimator (MLE) θ̂T is defined by the relation

LT (θ̂T ) = sup
θ∈Θ

LT (θ).(3.8)

We assume that there exists a measurable maximum likelihood estimator. Sufficient condi-

tions can be given for the existence of such an estimator (cf. Lemma 3.1.2, Prakasa Rao

(1987)). Then

logLT (θ) = θ

∫ T

0
QH(t)dZt −

1

2
θ2
∫ T

0
Q2

H(t)d < MH >t(3.9)

and the likelihood equation is given by∫ T

0
QH(t)dZt − θ

∫ T

0
Q2

H(t)d < MH >t= 0.(3.10)

Hence the MLE θ̂T of θ is given by

θ̂T =

∫ T
0 QH(t)dZt∫ T

0 Q2
H(t) d < MH >t

.(3.11)

Let θ0 be the true parameter. Using the fact that

dZt = θ0QH(t) d < MH >t +dM
H
t ,(3.12)
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it can be shown that

dP T
θ

dP T
θ0

= exp

[
(θ − θ0)

∫ T

0
QH(t)dMH

t − 1

2
(θ − θ0)

2
∫ T

0
Q2

H(t)d < MH >t

]
.(3.13)

Following this representation of the Radon-Nikodym derivative, we obtain that

θ̂T − θ0 =

∫ T
0 QH(t)dMH

t∫ T
0 Q2

H(t) d < MH >t

.(3.14)

This result was also obtained by Marushkevych (2016) by similar arguments and asymptotic

properties of the MLE were studied in Theorem 2 of Marushkevych (2016). Marushkevych

(2016) investigated large deviation properties of the maximum likelihood estimator of the

drift parameter θ as an application of the Gärtner-Ellis theorem following similar work of

Bercu et al. (2010) for fractional Ornstein-Uhlenbeck process. We will obtain inequalities for

large deviation probabilities for MLE following the work in Mishra and Prakasa Rao (2006)

and Ibragimov and Khasminskii (1981).

Bayes estimation

Suppose that the true parameter θ ∈ K ⊂ Θ ⊂ R where K is a compact set. Suppose that

Λ is a prior probability measure on the parameter space Θ ⊂ R. Further suppose that the

probability measure Λ has a density λ(.) with respect to the Lebesgue measure and the prior

density function is continuous and positive on the set K and has a polynomial majorant. Fix

θ0 ∈ Θ. The posterior density of θ given the observation XT ≡ {Xs, 0 ≤ s ≤ T} is given by

p(θ|XT ) =

dPT
θ

dPT
θ0

λ(θ)∫
Θ

dPT
θ

dPT
θ0

λ(θ) dθ
.(3.15)

We define the Bayes estimate (BE) θ̃T of the parameter θ based on the path XT and the

prior density λ(θ), to be the minimizer of the function

BT (ϕ) =

∫
Θ
L(θ, ϕ) p(θ|XT ) dθ, ϕ ∈ Θ

where L(θ, ϕ) is a given loss function defined on Θ×Θ. In particular, for the quadratic loss

function |θ − ϕ|2, the Bayes estimator is the posterior mean given by

θ̃T =

∫
Θ up

T (u|XT )du∫
Θ p

T (v|XT )dv
.

Suppose the loss function L(θ, ϕ) : Θ × Θ ⊂ R satisfies the following conditions (cf.

Ibragimov and Khasminskii (1981)):
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D(i) L(θ, ϕ) = L(|θ − ϕ|); for some real-valued function L(.) defimed on R with properties

given below.

D(ii) L(.) is non-negative and continuous on R; L(0)=0;

D(iii) L(.) is symmetric, that is, L(u) = L(−u), u ∈ R;

D(iv) the sets {θ : L(θ) < c} are convex sets for all c > 0, and are bounded for all c > 0

sufficiently small;

D(v) the function L(u) has a polynomial majorant, that is, L(u) ≤ f(u) where f(.) is a

polynomial; and

D(vi) there exists numbers γ > 0, η0 ≥ 0 such that for η ≥ η0,

sup {L(θ) : |θ| ≤ ηγ} ≤ inf {L(θ) : |θ| ≥ η} .

It is easy to check that the loss function of the form L(θ, ϕ) = |θ − ϕ|2 satisfies the

conditions D(i) - D(vi).

Let ET
θ denote the expectation with respect to the probability measure P T

θ . Define

ψH
T (θ; a) = ET

θ [exp(−a
∫ T

0
Q2

H(t)d < MH >t)]

for a > 0. Marushkevych (2016) proved that

lim
T→∞

1

T
logψH

T (θ; a) =
θ

2
−

√
θ2

4
+
a

2

for all a > − θ2

2 . In view of this observation, we make the following assumption.

Condition (A): Let K be a compact subset of Θ. Suppose that

sup
θ∈K

ET
θ [T

−1
∫ T

0
Q2

H(t)d < MH >t] = O(1)

and

sup
θ∈K

ET
θ [exp(−u2T−1

∫ T

0
Q2

H(t)d < MH >t)] = O(exp(−Cu8))

as T → ∞ for some positive constant C.
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4 Probabilities of large deviations

We now prove the following theorems giving the large deviation probabilities for the MLE

and BE discussed in Section 3.

Theorem 4.1: Under the condition (A) , there exist positive constants C1 and C2 such that

for every T ≥ T0, and for every ϵ > 0,

sup
θ∈K

P T
θ {|T 1/2(θ̂T − θ)| > ϵ} ≤ C1e

−C2ϵ2

where θ̂T is the MLE of the parameter θ.

Theorem 4.2: Under the conditions (A) and D(i)−D(vi) stated earlier, there exist positive

constants C3 and C4 such that for every T ≥ T0, and for every ϵ > 0,

sup
θ∈K

P T
θ {|T 1/2(θ̃T − θ)| > ϵ} ≤ C3e

−C4ϵ2

where θ̃T is the BE of the parameter θ with respect to the prior λ(.) and the loss function

L(., .) satisfying the conditions D(i)−D(vi).

Fix θ ∈ K. For proofs of theorems stated above, we need the following lemmas. Define

ZT (u) =
dP T

θ+uT−1/2

dP T
θ

.

Lemma 4.3 : Under the condition (A) stated above, there exist positive constants C5 and

C6 independent of T such that

supθ∈KE
T
θ [Z

1
2
T (u)] ≤ C5e

−C6u2

for −∞ < u <∞.

Lemma 4.4 : Under the condition (A) stated above, there exists a positive constant C7

independent of T such that

sup
θ∈K

ET
θ

{
Z

1
2
T (u1)− Z

1
2
T (u2)

}2

≤ C7(u1 − u2)
2

for −∞ < u1, u2 <∞.

Lemma 4.5 : Let ξ(x) be a real valued random function defined on a closed subset F of the

Euclidean space Rk. Assume that random process ξ(x) is measurable and separable. Assume
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that the following conditions are fulfilled : there exists numbers m ≥ r > k and a positive

continuous function on G(x) : Rk → R such that for all x, h ∈ F, x+ h ∈ F,

E|ξ(x)|m ≤ G(x), E|ξ(x+ h)− ξ(x)|m ≤ G(x)∥h∥r.

Then, with probability one, the realizations of ξ(t) are continuous functions on F. Moreover

let

ω(δ, ξ, L) = sup |ξ(x)− ξ(y)|

where the supremum is taken over x, y ∈ F with ∥x− y∥ ≤ h, ∥x∥ ≤ L, ∥y∥ ≤ L; then

E(ω(h, ξ, L)) ≤ B0

(
sup

∥x∥≤L
G(x)

) 1
m

Lk/mh
r−k
m log(h−1)

where the constant B0 depends on m, r and k.

We will use this lemma with ξ(u) = Z
1/2
T (u),m = 2, r = 2, k = 1, G(x) = e−cx2

and

L = H + r+ 1. For proof of this lemma, see Ibragimov and Khasminskii (1981) (Correction,

cf. Kallianpur and Selukar (1993)).

Proof of Lemma 4.3: Fix θ ∈ K. We know that

ET
θ (Z

1/2
T (u)) = ET

θ (
dPθ+uT−1/2

dP T
θ

)1/2

= ET
θ [exp{

uT−1/2

2

∫ T

0
QH(t)dMH(t)− 1

4
u2T−1

∫ T

0
Q2

H(t)d < MH >t}]

= ET
θ [exp{

uT−1/2

2

∫ T

0
QH(t)dMH(t)− u2T−1

6

∫ T

0
Q2

H(t)d < MH >t}

× exp{−u
2T−1

12

∫ T

0
Q2

H(t)d < MH >t}]

≤
[
ET

θ

{
exp

(
1

2
uT−1/2

∫ T

0
QH(t)dMH(t)

−(1/6)u2T−1
∫ T

0
Q2

H(t)d < MH >t

)}4/3
3/4

×

ET
θ

{
exp

(
−(1/12)u2T−1

∫ T

0
Q2

H(t)d < MH >t

)}4
1/4

(by Holder’s inequality)

=

{
ET

θ exp

(
2

3
uT−1/2

∫ T

0
QH(t)dMH(t) −(2/9)u2T−1

∫ T

0
Q2

H(t)d < MH >t

)
}3/4
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×{ET
θ exp(−(1/3)u2T−1Q2

H(t)d < MH >t)}1/4

≤
[
ET

θ

{
exp

(
−1

3
u2T−1

∫ T

0
Q2

H(t)d < MH >t

)}]1/4
(since the first term is less than or equal to one (cf. Gikhman and Skorokhod (1972)). The

last term is bounded by C5e
−C6u2

uniformly for θ ∈ K for some positive constants C5 and

C6 by the condition (A) which completes the proof of Lemma 4.3.

We now prove Lemma 4.4.

Proof of Lemma 4.4: Fix θ ∈ K. Note that

ET
θ

{
Z

1
2
T (u1)− Z

1
2
T (u2)

}2

= ET
θ {ZT (u1) + ZT (u2)} − 2ET

θ

{
Z

1
2
T (u1)Z

1
2
T (u2)

}
= 2

[
1− ET

θ

{
Z

1
2
T (u1)Z

1
2
T (u2)

}]
(since ET

θ ZT (u) = ET
θ [exp{uT−1/2

∫ T

0
QH(t)dMH(t)

−1

2
u2T−1

∫ T

0
Q2

H(t)d < MH >t}]) = 1.

Denote

VT = (
dP T

θ2

dP T
θ1

)1/2 where θ1 = θ + u1T
−1/2 and θ2 = θ + u2T

−1/2

= exp{1
2
(u2 − u1)T

−1/2
∫ T

0
QH(t)dMH(t)

−1

4
(u2 − u1)

2T−1
∫ T

0
Q2

H(t)d < MH >t}.

Now

ET
θ {Z

1
2
T (u1)Z

1
2
T (u2)}

= ET
θ {(

dP T
θ+u1T−1/2

dP T
θ

)1/2(
dP T

θ+u2T−1/2

dP T
θ

)1/2}

=

∫
(
dP T

θ1

dP T
θ

)1/2(
dP T

θ2

dP T
θ

)1/2dP T
θ

=

∫
(
dP T

θ2

dP T
θ1

)1/2dP T
θ1 = ET

θ1(VT )
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= ET
θ1 [exp{

1

2
(u2 − u1)T

−1/2
∫ T

0
QH(t)dMH(t)

−1

4
(u2 − u1)

2T−1
∫ T

0
Q2

H(t)d < MH >t}].

Thus

2{1− ET
θ (Z

1
2
T (u1)Z

1
2
T (u2))}

= 2[1− ET
θ1(exp{

1

2
(u2 − u1)T

−1/2
∫ T

0
QH(t)dMH(t)

−1

4
(u2 − u1)

2T−1
∫ T

0
Q2

H(t)d < MH >t})]

≤ 2[1− expET
θ1{

1

2
(u2 − u1)T

−1/2
∫ T

0
QH(t)dMH(t)

−1

4
(u2 − u1)

2T−1
∫ T

0
Q2

H(t)d < MH >t}] (by Jensen’s inequality)

= 2[1− exp{−(u2 − u1)
2

4
T−1ET

θ1(

∫ T

0
Q2

H(t)d < MH >t)}]

≤ 2[
(u2 − u1)

2

4
T−1ET

θ1 [

∫ T

0
Q2

H(t)d < MH >t] (since 1− e−x ≤ x)

= C7(u2 − u1)
2

for some positive constant C7 uniformly θ ∈ K.

Proof of Theorem 4.1: Fix θ ∈ K. Denote U = {u : θ + u ∈ Θ}. Let Γr be the interval

L+ r ≤ |u| ≤ l + r + 1. We use the following inequality to prove the theorem:

P T
θ {sup

Γr

ZT (u) ≥ 1} ≤ C8(1 + L+ r)
1
2 e−

1
4
(L+r)2(4.1)

for some positive constant C8 uniformly for θ ∈ K. Observe that

P T
θ {|T 1/2(θ̂T − θ)| > L} ≤ P T

θ { sup
|u|>l,u∈U

ZT (u) ≥ ZT (0)}

≤
∞∑
r=0

P T
θ {sup

Γr

ZT (u) ≥ 1}

≤ C9

∞∑
r=0

e−C10(L+r)2

≤ C1e
−C2L2

.

uniformly for θ ∈ K for some positive constants C1 and C2. This proves Theorem 4.1. We

now prove the inequality (4.1). Fix θ ∈ K. We divide the interval Γr into N sub-intervals
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{Γ(j)
r , 1 ≤ j ≤ N} each with length at most h. The number of such sub-intervals N ≤ [ 1h ]+1.

Choose uj ∈ Γ
(j)
r , 1 ≤ j ≤ N. Then

P T
θ { sup

u∈Γr

ZT (u) ≥ 1} ≤
N∑
j=1

P T
θ {ZT (uj) ≥

1

2
}(4.2)

+P T
θ { sup

|u−v|≤h,|u|,|v|≤L+r+1
|Z

1
2
T (u)− Z

1
2
T (v)| ≥

1

2
}.

From the Chebyshev’s inequality and in view of Lemma 4.3 , it follows that

sup
θ∈K

P T
θ {Z

1
2
T (uj) ≥

1

2
} ≤ C10e

−(L+r)2 , 1 ≤ j ≤ N

for some positive constant C10. Applying Lemma 4.5 with ξ(u) = Z
1/2
T (u), and using Lemma

4.4, we obtain that

ET
θ [ sup

|u−v|≤h
|u|,|v|≤(L+r+1)

|Z1/2
T (u)− Z

1/2
T (v)|] ≤ C11(L+ r + 1)

1
2h1/2 log(h−1)

for some positive constant C11 uniformly for θ ∈ K. Hence

P T
θ { sup

u∈Γr

ZT (u) ≥ 1} ≤ C12{
1

h
e−(L+r)2 + (L+ r + 1)

1
2h1/2 log(h−1)}

for some positive constant C12 uniformly for θ ∈ K by using the inequality (4.2). Choosing

h = e−(L+r)2/2, we prove the inequality in Theorem 4.1.

Proof of Theorem 4.2 : Observe that the conditions (1) and (2) in Theorem 5.2 of

Ibragimov and Khasminskii (1981) are satisfied by Lemmas 4.3 and 4.4. In view of the

conditions on the loss function mentioned in Section 3, we can prove Theorem 4.2 by using

Theorem 5.2 in Ibragimov and Khasminskii (1981) with α = 2 and g(u) = u2. We omit the

details.

Remarks: Bahadur (1960) suggested measuring the asymptotic efficiency of an estimator δT

of a parameter θ by the magnitude of concentration of the estimator in an interval of a fixed

length independent of T , that is, by the magnitude of the probability P T
θ (|δT − θ| ≤ γ) for

some fixed γ > 0. From the result obtained in Theorem 4.1 proved above, we note that the

probability P T
θ (|θ̂T−θ| > γ) is bounded above by C1e

−C2γ2T , C1 > 0, C2 > 0 for the maximum

likelihood estimator θ̂T . This bound in turn decrease exponentially to zero as T → ∞ for any

fixed γ > 0. Following the techniques in Theorem 9.3 in Ibragimov and Khasminskii (1981),
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it can be shown that the MLE is Bahadur efficient under some additional conditions. Similar

result follows for the Bayes estimator θ̃T following Theorem 4.2.
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