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1 Introduction

Methods of nonparametric estimation of a density function and regression function are widely

discussed in the literature (cf. Prakasa Rao (1983, 1999a)). It is known that the estimation

of derivatives of a density are also of importance and interest to detect possible bumps and to

detect monotonicity, concavity or convexity properties of the density function. Asymptotic

properties of the kernel type estimators for the derivatives of density have been investigated

earlier (cf. Prakasa Rao (1983)).

Our aim in this paper is to discuss wavelet linear estimators for the derivative of a

probability density function in the presence of an additive noise. Estimators of density

using wavelets was studied for independent and identically distributed random variables in

Antoniadis et al. (1994), for some stationary dependent random variables in Leblanc (1996)

and for stationary associated sequences in Prakasa Rao (2003). Chaubey et al. (2006, 2008)

extended these results to derivatives of density estimators for associated sequences and for

negatively associated processes. The advantages and disadvantages of the use of wavelet

based probability density estimators are discussed in Walter and Ghorai (1992) in the case of

independent and identically distributed observations. However it was shown in Prakasa Rao

(1996, 1999b) that one can obtain precise limits on the asymptotic mean squared error for a

wavelet based linear estimator for the density function and its derivatives as well as some other

functionals of the density. Tribouley (1995) studied estimation of multivariate densities using
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wavelet methods. Prakasa Rao (2000) investigated nonparametric estimation of the partial

derivatives of a multivariate probability density. Donoho et al. (1996) investigated density

estimation by wavelet thresholding. For a discussion on statistical modeling by wavelets, see

Vidakovic (1999).

In recent papers, Chesneau and Doosti (2012) studied wavelet estimation of density for

a GARCH model under various dependence structures and Chesneau (2013) investigated

wavelet estimation of a density in a GARCH-type model leading to upper bounds on the

mean integrated squared error. Shirazi et al. (2012) obtained wavelet based estimation

of the derivative of a density by blockthresholding under random censorship. We studied

estimation of the derivative of a density in GARCH-type model, which can be considered

as a generalization of multiplicative censoring model, in Prakasa Rao (2016). Vardi (1989)

(cf. Vardi and Zhang (1992)) introduced the multiplicative censoring model which unifies

several models including nonparametric inference for renewal processes, non-parametric de-

convolution problems and estimation of decreasing density functions. Chaubey et al. (2014)

studied adaptive wavelet estimation of a density from mixtures under multiplicative censoring

model generalizing the results in Prakasa Rao (2010). Asgharian et al. (2012) investigated

asymptotic properties of the kernel density estimators under multiplicative censoring model.

Andersen and Hansen (2001) studied density estimation for multiplicative censoring model

using a series expansion approach. Chaubey et al. (2011) give a survey of recent results on

linear wavelet density estimation.

Estimation of a probability density function, in the presence of an additive noise, via

wavelets has been recently investgated in Li and Liu (2014), Geng and Wang (2015) and

Hosseinioun (2016). Density estimation for a statistical model with additive noise plays an

important role in statistics and econometrics (cf. Li and Racine (2007)). For earlier work on

this problem, see Fan and Koo (2002) and Lounici and Nicki (2011). In practical situations,

it is not possible to observe data directly . Suppose we have observed data consisting of

independent and identically distributed observations Y1, . . . , Yn based on the model

Y = X + ϵ

where X is a real valued random variable with unknown probability density function fX and

ϵ is an independent random noise with a known probabilty density function g. The problem

of estimation of the density fX based on the observed data Y1, . . . Yn has been investigated by

the authors cited earlier among others. Our aim is to investgate the problem of estimation of
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the derivatives of the density fX , whenever they exist, based on the observed data Y1, . . . Yn.

As we mentioned earlier, this problem is also of importance and interest to detect possible

bumps of the unknown density function fX and to detect monotonicity, concavity or convexity

properties of the density function fX . Let fY denote the probability density function of the

random variable Y . Note that fY is the convolution of the probability density functions fX

and g, i.e., fY = fX ∗ g in the standard notation for convolution.

2 Preliminaries on wavelets

A wavelet system is an infinite collection of translated and scaled versions of functions ϕ(.)

and ψ(.) called the scaling function and the primary wavelet function respectively. In the

following discussion, we assume that ϕ(.) is real-valued. The function ϕ(x) is a solution of

the equation

ϕ(x) =
∞∑

k=−∞
Ckϕ(2x− k)(2. 1)

with ∫ ∞

−∞
ϕ(x)dx = 1(2. 2)

and the function ψ(x) is defined by

ψ(x) =
∞∑

k=−∞
(−1)kC−k+1ϕ(2x− k).(2. 3)

The choice of the sequence {Ck} determines the wavelet system. It is easy to see that

∞∑
k=−∞

Ck = 2.(2. 4)

Define

ϕjk(x) = 2j/2ϕ(2jx− k),−∞ < j, k <∞(2. 5)

and

ψjk(x) = 2j/2ψ(2jx− k),−∞ < j, k <∞.(2. 6)

Suppose the coefficients {Ck} satisfy the condition

∞∑
k=−∞

CkCk+2ℓ = 2 if ℓ = 0(2. 7)

= 0 if ℓ ̸= 0.
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It is known that, under some additional conditions on ϕ(.), the collection {ψj,k,−∞ < j, k <

∞} is an orthonormal basis for L2(R), and {ϕj,k,−∞ < k < ∞} is an orthonormal system

in L2(R), for each −∞ < j <∞ (cf. Daubechies (1988, 1992)).

Definition 2.1: The scaling function ϕ is said to be r-regular for an integer r ≥ 1, if for

every nonnegative integer ℓ ≤ r, and for any integer k ≥ 1,

|ϕ(ℓ)(x)| ≤ ck(1 + |x|)−k,−∞ < x <∞(2. 8)

for some ck ≥ 0 depending only on k. Here ϕ(ℓ)(.) denotes the ℓ-th derivative of ϕ(.).

Definition 2.2: A multiresolution analysis of L2(R) consists of an increasing sequence of

closed subspaces {Vj} of L2(R) such that

(i) ∩∞
j=−∞Vj = {0} ;

(ii)∪̄∞
j=−∞Vj = L2(R);

(iii) there is a scaling function ϕ ∈ V0 such that {ϕ(x− k),−∞ < k <∞} is an orthonormal

basis for V0;

(iv) for all h(.) ∈ L2(R),−∞ < k <∞, h(x) ∈ V0 ⇒ h(x− k) ∈ V0; and

(v) h(.) ∈ Vj ⇒ h(2x) ∈ Vj+1.

Mallat (1989) has shown that, given any multiresolution analysis, it is possible to find a

function ψ(.) (called primary wavelet function) such that , for any fixed j,−∞ < j <∞, the

family {ψj,k,−∞ < k < ∞} is an orthonormal basis of the orthogonal complement Wj of

Vj in Vj+1 so that {ψj,k,−∞ < j, k < ∞} is an orthonormal basis of L2(R) (cf. Daubechies

(1988, 1992)). When the scaling function ϕ(.) is r-regular, the corresponding multiresolution

analysis is said to be r-regular.

Let f ∈ L2(R). The function f can be expanded in the form (cf. Daubechies (1992)):

f =
∞∑

k=−∞
as,kϕs,k +

∞∑
j=s

∞∑
k=−∞

bj,kψj,k(2. 9)

= Psf +
∞∑
j=s

Djf

for any integer −∞ < s <∞. Observe that the wavelet coefficients are given by

as,k =

∫ ∞

−∞
f(x)ϕs,k(x)dx(2. 10)

and

bj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx.(2. 11)
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Suppose that the functions ϕ and ψ belong to Cr, the space of functions with r continuous

derivatives for some r ≥ 1, and have compact support contained in an interval [−δ, δ] for
some δ > 0. It follows, from the Corollary 5.5.2 in Daubechies (1988), that the function ψ(.)

is orthogonal to polynomials of degree less than or equal to r. In particular∫ ∞

−∞
ψ(x)xℓdx = 0, ℓ = 0, 1, . . . , r.

This brief discussion on wavelets is based on Antoniades et al. (1994). For a more details,

see Daubechies (1992) and Strang (1989).

3 More on wavelets

Let ϕ(.) be a scaling function as defined earlier. Define

θϕ(x) =
∞∑

k=−∞
|ϕ(x− k)|.

Suppose the following conditions hold:

(C1) The ess supx θϕ(x) <∞ where

ess sup
x
g(x) = inf{y : λ([x : g(x) > y]) = 0}

and λ is the Lebesgue measure on the real line.

(C2) There exists a bounded nondecreasing function Φ(.) such that |ϕ(u)| ≤ Φ(|u|) almost

every where and ∫ ∞

0
|u|rΦ(|u|)du <∞.

for some integer r ≥ 0.

The following Lemmas 3.1 to 3.3 follow from the results in Hardle et al. (1998).

Lemma 3.1: Suppose the condition (C1) holds. Then, for any sequence {λs, s ∈ Z} ∈ ℓp,

C1||λ||ℓp2
s
2
− s

p ≤ ||
∑
k

λkϕs,k||p ≤ C2||λ||ℓp2
s
2
− s

p

where

C1 = (||θϕ||1/p∞ ||ϕ||1/q1 )−1

and

C2 = (||θϕ||1/q∞ ||ϕ||1/p1 )−1
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where 1 ≤ p ≤ ∞, 1p + 1
q = 1 with suitable interpretation for p and q in the boundary case.

Since the scaling function ϕ satisfies the condition(C1), the kernel function

K(x, y) =
∑
k

ϕ(x− k)ϕ(y − k)

is well defined and it is called the orthonormal projection associated with the function ϕ. Let

Ks(x, y) = 2sK(2sx, 2sy)

and for any function h ∈ Lp(R), 1 ≤ p ≤ ∞, define

Ksh(x) =

∫ ∞

−∞
Ks(x, y)h(y)dy =

∑
s

αs,kϕs,k(x)(3. 1)

where

αs,k =

∫ ∞

−∞
ϕs,k(x)h(x)dx.

Lemma 3.2: Suppose the condition (C1) holds. Then

(i)

∫ ∞

−∞
K(x, y)dy = 1 a.e.

and

(ii)|K(x, y)| ≤ C1Φ(
|x− y|
C2

) a.e

where C1 and C2 are positive constants depending on Φ.

Let F (x) = C1Φ(
|x|
C2

). Then the function F ∈ L1(R)∩L∞(r) and |K(x, y)| ≤ F (x−y) a.e

Lemma 3.3: Suppose the condition (C1) holds and h ∈ Lp(R), 1 ≤ p <∞. Then

lim
n→∞

||Ksh− h||p = 0.

Suppose the function h(d) exists and h(d) ∈ Lp(R) for some 1 ≤ p <∞. As a consequence

of Lemma 3.3, it follows that

lim
n→∞

||Ksh
(d) − h(d)||p = 0.(3. 2)

It can be shown that Lemma 3.3 holds for h ∈ L∞(R) if the function h(.) is uniformly

continuous. We will now state another result known as Rosenthal’s inequality (Rosenthal

(1970)) which will be used in the sequel.
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Lemma 3.4: Let X1, . . . , Xn be independent random variables with mean zero and further

suppose that |Xi| ≤M <∞, 1 ≤ i ≤ n. Then there exists a constant Cp > 0, such that

(i)E(|
n∑

i=1

Xi|p) ≤ Cp(M
p−2

n∑
i=1

E(X2
i ) + (

n∑
i=1

E(X2
i ))

p/2), p > 2,

and

(ii)E(|
n∑

i=1

Xi|p) ≤ Cp(
n∑

i=1

E(X2
i ))

p/2, 0 < p ≤ 2.

4 Estimation of the d-th derivative of a probability density

function

For any function h(.) ∈ L1(R), define the Fourier transform

h̃(t) =

∫ ∞

−∞
h(x)e−itxdx,−∞ < t <∞.

It is known that f̃Y (t) = f̃X(t)g̃(t), t ∈ R. Suppose that the Fourier transform g̃(t) of the

probability density function g is non-vanishing for all t ∈ R.

Let {Xi, 1 ≤ i ≤ n} be independent and identically distributed random variables with

probability density function fX which is d-times differentiable. Suppose that the derivative

f
(d)
X of fX exists, bounded, has compact support and f

(d)
X ∈ L2(R). Let us first consider the

estimation of the probability density function fX . A wavelet based density estimator of the

density function fX can be motivated in the following way from the expansion given in the

equation (2.9) (cf. Prakasa Rao (2003)). We can estimate fX(x) by f̂X(x) where

f̂X(x) =
∑
k∈Ns

αs,kϕs,k(x)(4. 1)

where

αs,k =
1

n

n∑
i=1

ϕs,k(Xi).(4. 2)

Here Ns is the set of integers k such that supp(fX) ∩ supp(ϕs,k) is nonempty. Since the

functions fX and ϕ have compact supports, the cardinality of the set Ns is finite and it is of

the order O(2s).

Let us now consider the problem of estimation of the derivative f
(d)
X of fX . As in Prakasa

Rao (1996), we assume that fdX ∈ L2(R) and that there exist Dj ≥ 0, βj ≥ 0, such that

|f (j)X (x)| ≤ Dj |x|−βj , |x| ≥ 1, 0 ≤ j ≤ d
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where β0 > 4d + 1. Suppose the multiresolution analysis generated by the scaling function

ϕ is r-regular for some r ≥ d. Then, by definition, ϕ ∈ C(r), ϕ and its derivatives ϕ(j) up to

order r are rapidly decreasing, i.e., for every integer m ≥ 1, there exists a constant Am > 0,

such that

|ϕ(j)(x)| ≤ Am(1 + |x|)−m, 0 ≤ j ≤ r.

If d ≥ 1, then it is clear that

lim
|x|→∞

ϕ
(j)
s,k(x)f

(d−j−1)(x) = 0, 0 ≤ j ≤ d− 1

for any fixed s and k. The projection of f
(d)
X on Vs is

f
(d)
X,s(x) =

∑
k∈Ns

as,kϕs,k(x)(4. 3)

where

as,k =

∫ ∞

−∞
f
(d)
X (x)ϕs,k(x)dx(4. 4)

= (−1)d
∫ ∞

−∞
fX(x)ϕ

(d)
s,k(x)dx.

The last equality given above can be justified by using integration by parts since the function

ϕ(.) is r-regular (cf. Prakasa Rao (1996)). This expression motivates the following estimator

for f
(d)
X (x) :

f̂
(d)
X,s(x) =

∑
k∈Ns

âs,kϕs,k(x)(4. 5)

where

âs,k =
(−1)d

n

n∑
i=1

ϕ
(d)
s,k(Yi).

Note that the estimator defined above in the equation (4.5) reduces to the density estimator

given in (4.1) for d = 0. Since the random sample Xi, 1 ≤ i ≤ n is unobservable and the

observed data is Yi = Xi + ϵi, 1 ≤ i ≤ n, we now modify the estimator f̂
(d)
X,s(x).

By Plancherel formula,

as,k = (−1)d
∫ ∞

−∞
fX(x)ϕ

(d)
s,k(x)dx

=
(−1)d

2π

∫ ∞

−∞
f̃X(t)ϕ̃

(d)
s,k(t)dt

=
(−1)d

2π

∫ ∞

−∞

f̃Y (t)

g̃(t)
ϕ̃
(d)
s,k(−t)dt.
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For any function ψ(.) which is d-times differentiable, define ψs,k(x) = 2s/2ψ(2sx − k) for

integers s, k and let ψ
(d)
s,k(x) denote the d-th derivative of the function ψs,k(x). Define the

operator Hs by the transformation

(Hsψ
(d))s,k(y) =

1

2π

∫
R
eity

ψ̃
(d)
s,k(t)

g̃(−t)
dt, y ∈ R

for all integers −∞ < s, k <∞. It can be checked that

ψ̃(d)(u) = eiku2
s
2−ds+ s

2 ψ̃
(d)
s,k(u2

s)

which we will use in the computations later. Let

âs,k =
(−1)d

n

n∑
i=1

(Hsϕ
(d))s,k(Yi).(4. 6)

We now rewrite the expression for the modified estimator f̂
(d)
X,s(x) in a slightly different

form. Note that

f̂
(d)
X,s(x) =

∑
k∈Ns

âs,kϕs,k(x)(4. 7)

=
∑
k∈Ns

[
(−1)d

n

n∑
i=1

(Hsϕ
(d))s,k(Yi)]ϕs,k(x)

=
(−1)d

n

n∑
i=1

[
∑
k∈Ns

(Hsϕ
(d))s,k(Yi)ϕs,k(x)].

Lemma 4.1: If the function f
(d)
X ∈ L2(R), then the estimator âs,k defined by the equation

(4.6) is an unbiased estimator of the wavelet coefficient as,k given by the equation (4.4).

Proof : Note that

E[âs,k] = E[
(−1)d

n

n∑
i=1

(Hsϕ
(d))s,k(Yi)]

= (−1)dE[(Hsϕ
(d))s,k(Y1)]

=
(−1)d

2π

∫ ∞

−∞
[

∫ ∞

−∞
eity

ϕ̃
(d)
s,k(t)

g̃(−t)
dt]fY (y)dy

=
(−1)d

2π

∫ ∞

−∞
[

∫ ∞

−∞
eityfY (y)dy]

ϕ̃
(d)
s,k(t)

g̃(−t)
dt
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=
(−1)d

2π

∫ ∞

−∞
f̃Y (−t)

ϕ̃
(d)
s,k(t)

g̃(−t)
dt

=
(−1)d

2π

∫ ∞

−∞
f̃X(−t)ϕ̃(d)s,k(t)dt

=
(−1)d

2π

∫ ∞

−∞
f̃X(t)ϕ̃

(d)
s,k(−t)dt

=
(−1)d

2π

∫ ∞

−∞
f̃X(t)ϕ̃

(d)
s,k(t)dt

= (−1)d
∫ ∞

−∞
fX(x)ϕ

(d)
s,k(x)dx

=

∫ ∞

−∞
f
(d)
X (x)ϕs,k(x)dx

= as,k.

We will now discuss Lp-consistency of the estimator f̂
(d)
X,s(x) for estimating of the function

f
(d)
X (x) following the techniques in Geng and Wang (2015). For any function f ∈ Lp(R), we

write ||f ||pp for
∫
R |f(x)|pdx.

Theorem 4.1: Suppose that g̃(t) ≃ (1 + |t2|)−β/2, t ∈ R for some β ≥ 0 and the function

f
(d)
X ∈ Lp(R) for some 2 ≤ p < ∞. Further suppose that fY ∈ Lp/2(R). Choose the positive

integer s such that 2s ≃ n

1−ϵ

1+2β+4d
2p−1

p for some 0 < ϵ < 1. Define the estimator f̂
(d)
X,s(x) as an

estimator of the function f
(d)
X (x). Then the estimator f̂

(d)
X,s(x) is Lp-consistent, i.e.,

lim
n→∞

E||f̂ (d)X,s − f
(d)
X ||p = 0.

Proof : Note that

E[f̂
(d)
X,s(x)] = E[

∑
k∈Ns

âs,kϕs,k(x)]

= E[
∑
k∈Ns

[
(−1)d

n

n∑
i=1

(Hsϕ
(d))s,k(Yi)]ϕs,k(x)]

= E[(−1)d
∑
k∈Ns

(Hsϕ
(d))s,k(Y1)]ϕs,k(x)]

= (−1)d
∑
k∈Ns

E[(Hsϕ
(d))s,k(Y1)]ϕs,k(x)

=
∑
k∈Ns

as,kϕs,k(x)
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= Ksf
(d)
X (x)

where the operator Ks is as defined by the equation (3.1).

As a consequence of the equation (3.2) following Lemma 3.3 (cf. Hardle et al. (1998)), it

follows that

lim
n→∞

||f (d)X − E[f̂
(d)
X,s]||p = lim

n→∞
||f (d)X −Ksf

(d)
X ||p = 0.(4. 8)

In the following discussion, we will denote As ≃ Bs if there exist positive constants C1 and

C2 such that

C1Bs ≤ As ≤ C2Bs

as s→ ∞. We will now estimate the term

||f̂ (d)X,s − E[f̂
(d)
X,s]||p.

Note that

||f̂ (d)X,s − E[f̂
(d)
X,s]||

p
p = ||

∑
k∈Ns

âs,kϕs,k(x)−
∑
k∈Ns

as,kϕs,k(x)]||pp

= ||
∑
k∈Ns

(âs,k − as,k)ϕs,k(x)||pp

≃ 2s(
p
2
−1)[

∑
k∈Ns

|âs,k − as,k|p] (by Lemma 3.1)

and hence

E[||f̂ (d)X,s − E[f̂
(d)
X,s]||

p
p] ≃ 2s(

p
2
−1)E[

∑
k∈Ns

|âs,k − as,k|p]

= 2s(
p
2
−1)[

∑
k∈Ns

E|âs,k − as,k|p].

Observe that

|âs,k − as,k| = | 1
n

n∑
i=1

(Hsϕ
(d))s,k(Yi)−

1

n

n∑
i=1

E[(Hsϕ
(d))s,k(Yi)]|

=
1

n
|

n∑
i=1

Zik|
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where

Zik = (Hsϕ
(d))s,k(Yi)− E[(Hsϕ

(d))s,k(Yi).

Therefore

|(Hsϕ
(d))s,k(y)| = | 1

2π

∫
R
eity

ϕ̃
(d)
s,k(t)

g̃(−t)
dt|

≤ 1

2π

∫
R
|
ϕ̃
(d)
s,k(t)

g̃(−t)
|dt

≃ 1

2π

∫
R
|ϕ̃(d)s,k(t)||(1 + |t|)β/2dt

≃ 2ds−
s
2

∫
R
|ϕ̃(d)(u)|(1 + |u|2s)β/22sdu

≃ 2ds+
s
2 2βs.

Hence

|Zik| = |(Hsϕ
(d))s,k(Yi)− E[(Hsϕ

(d))s,k(Yi)]|

≤ |(Hsϕ
(d))s,k(Yi)|+ E|(Hsϕ

(d))s,k(Yi)|

= | 1
2π

∫ ∞

−∞
2ds+

s
2 eit(2

Y
i −k)

˜ϕ(d)(t)

g̃(−2st)
dt|

+
1

2π

∫ ∞

−∞
|
∫ ∞

−∞
2ds+

s
2 eit(2

y−k)
˜ϕ(d)(t)

g̃(−2st)
dt|fy(y)dy

≃ 2s(
1
2
+β+d).

Applying Rosenthal’s inequality (Lemma 3.5), it follows that

E[|âs,k − as,k|p] =
1

np
E|

n∑
i=1

Zik|p(4. 9)

≃ 1

np
[2s(

1
2
+β+d)(p−2)

n∑
i=1

E|Zik|2 + (
n∑

i=1

E|Zik|2)p/2]

=
2s(

1
2
+β+d)(p−2)

np−1
E|Z1k|2 +

1

np/2
(E|Z1k|2)p/2.

We will now estimate
∑

k(E|Z1k|2)p/2. Observe that

A =

∫
R
|(Hsϕ

(d))s,k(y)|2dy

12



= 2π

∫
R
|
˜
ϕ
(d)
s,k(t)

g̃(−t)
|2dt

≃ 24ds−s
∫
R
|
˜ϕ(d)(t2−s)

g̃(−t)
|2dt

≃ 2s(4d−1)
∫
R
|

˜ϕ(d)(u)

g̃(−u2s)
|22sdu

≃ 24ds
∫
R
|(1 + |u222s|)β/2ϕ̃(d)(u)|2du

≃ 24ds+2βs.

Hence

(E|Z1k|2)p/2 = (E|(Hsϕ
(d))s,k(Y1)−E[(Hsϕ

(d))s,k(Y1)]|2)p/2

≤ (E|(Hsϕ
(d))s,k(Y1)|2)p/2

= (

∫
R
|(Hsϕ

(d))s,k(y)|2fY (y)dy)p/2

= Ap/2(

∫
R
|(Hsϕ

(d))s,k(y)|2

A
fY (y)dy)

p/2

≤ A
p
2
−1(

∫
R
|(Hsϕ

(d))s,k(y)|2)(fY (y))p/2dy.

Furthermore

∑
k

|(Hsϕ
(d))s,k(y)|2 =

∑
k

| 1
2π

∫
R
eity

˜
ϕ
(d)
s,k(t)

g̃(−t)
dt|2

≃
∑
k

(2ds−s/2|
∫ 4π/3

−4π/3
eit(y−k)

˜ϕ(d)(t2−s)

g̃(−t)
dt|)2

≃ 22ds−s
∑
k

(|
∫ 4π/3

−4π/3
eit(y−k)

˜ϕ(d)(t2−s)

g̃(−t)
dt|)2

= 22ds−s
∑
k

(|
∫ 4π/3

−4π/3
ei(y−k)u2s

˜ϕ(d)(u)

g̃(−u2s)
2sdu|)2

= 22ds+s
∑
k

(|
∫ 4π/3

−4π/3
ei(y−k)u2s

˜ϕ(d)(u)

g̃(−u2s)
du|)2

= 22ds+s
∑
k

(|
∫ 4π/3

0
eit2

sy
˜ϕ(d)(t)

g̃(−2st)
e−it2skdt|

13



+|
∫ 0

−4π/3
eit2

sy
˜ϕ(d)(t)

g̃(−2st)
e−it2skdt|)2

≃ 22ds+s[
∑
k

(|
∫ 4π/3

0
eit2

sy
˜ϕ(d)(t)

g̃(−2st)
e−it2skdt|2

+
∑
k

(|
∫ 0

−4π/3
eit2

sy
˜ϕ(d)(t)

g̃(−2st)
e−it2skdt|2]

Observe that the function

eit2
sy

˜ϕ(d)(t)

g̃(−2st)
I[0,2π] ∈ L2[0, 2π]

and the series {e−it2sk, k ∈ Z} is an orthonormal basis for L2[0, 2π]. An application of the

Parseval formula shows that

∑
k

(|
∫ 4π/3

0
eit2

sy
˜ϕ(d)(t)

g̃(−2st)
e−it2skdt|2 =

∫ 4π/3

0
|eit2sy

˜ϕ(d)(t)

g̃(−2st)
|2dt = 22sβ.

In a similar way, we get that

∑
k

(|
∫ 0

−4π/3
eit2

sy
˜ϕ(d)(t)

g̃(−2st)
e−it2skdt|2 = 22sβ.

Combining the above bounds, it follows that

∑
k

|(Hsϕ
(d))s,k(y)|2 ≤ 2s(2β+1+2d)

which in turn implies that

∑
k

(E|Z1k|2)p/2 ≤ A
p
2
−12s(2β+1+2d) = 2s((βp+1)+2d(p−1)).

Hence

∑
k

E|âs,k − as,k|p =
2s(

1
2
+β+d)(p−2)

np−1

∑
k

E|Z1k|2 +
1

np/2

∑
k

(E|Z1k|2)p/2

≤ 2s(
1
2
+β+d)(p−2)2s(2β+1+2d)

np−1
+

2s(βp+1+2d(p−1))

np/2

=
2s((βp+1)+2d(p−1))

np/2
(1 +

2s(
p
2
−1−d(p−2))

n
p
2
−1

).

14



As a consequence of the bound obtained above, it follows that

E[||f̂ (d)X,s −E[f̂
(d)
X,s]||

p
p] ≤ 2s(

p
2
−1) 2

s(βp+1)+2d(p−1)

np/2
(1 +

2s(
p
2
−1−d(p−2))

n
p
2
−1

)

≃ (
2
s(2β+1+4d

(p−1)
p

)

n
)p/2.

Choosing 2s ≃ n

1−ϵ

1+2β+4d
(p−1)

p for some 0 < ϵ < 1, we obtain that

lim
n→∞

E[||f̂ (d)X,s − E[f̂
(d)
X,s]||

p
p] = 0.(4. 10)

Combining the relations (4.8) and (4.10), we obtain that

lim
n→∞

E[||f̂ (d)X,s − f
(d)
X ||pp] = 0(4. 11)

by the inequality

||U + V ||p ≤ ||U ||p + ||V ||p

for U, V ∈ Lp(R). This proves the Lp-consistency of the estimator f̂
(d)
X,s for estimating the

derivative f
(d)
X .
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