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Abstract : It has been observed that the stock price process can be modeled with driving

force as a mixed fractional Brownian motion with Hurst index H > 3
4 whenever long-range

dependence is possibly present. We obtain a closed form expression for the price of a geo-

metric Asian option under the mixed fractional Brownian motion environment. We consider

also Asian power options when the payoff function is a power function.
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1 Introduction

Estimation of option price is an important problem in mathematical finance. A call option

is a contract which gives the holder the right but not obligation to buy a risky asset at a

certain date called the strike date or the exercise date with a predetermined price called

the strike price or the exercise price. A put option is a contract which gives the holder the

right but not obligation to sell a risky asset at a certain date called the strike date or the

exercise datewith a predetermined price called the strike price or exercise price. There are

several types of options that are traded in a market. American option allows the owner

to exercise his option at any time up to and including the strike date. Bermuda options

permit the owner to exercise his option early but only on a contractually specified finite set

of dates. European options can be exercised only on the strike date. European options are

also called vanilla options. Their payoffs at maturity depend on the spot value of the stock

at the time of exercise. There are other options whose values depend on the stock prices

over a predetermined time interval. For an Asian option, the payoff is determined by the

average value over some predetermined time interval. Asian options reduce the volatility
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inherent in the option and are cheap compared to the European option (cf. Mao and Liang

(2014), Prakasa Rao (2013)). For modelling of fluctuations in movement of stock prices,

Brownian motion has been used traditionally as the driving force for modelling log returns.

It has been noted later that there might be long-range dependence in the phenomena and

the log returns have possibly heavy tailed distibutions. It was suggested by some that the

driving force for modelling of price movement may be chosen as a fractional Brownian motion.

Bjork and Hult (2005) and Kuznetsov (1999) observed that the use of fractional Brownian

motion for modelling fluctuations in movement of stock prices is not justifiable as it allows

arbitrage opportunities. To avoid this problem, Cheridito (2000, 2003) suggested the use

of a mixed fractional Brownian motion as a suitable model to capture the flutuations of

the financial assets. The mixed fractional Brownian motion (mfBm) is a Gaussian process

that is linear combination of the Brownian motion and a fractional Brownian motion with

Hurst index H > 1/2. Cheridito (2001) has proved that, for H ∈ (3/4, 1), the mfBm is

equivalent to a Brownian motion and hence modeling price fluctuation via mfBm allows

arbitrage-free market. Xiao et al. (2012) studied pricing model for equity warrants in a

mixed fractional Brownian environment. Sun (2013) investigated pricing currency options

when the driving force is a mixed fractional Brownian motion. Yu and Yan (2008) discussed

European call option pricing under a mixed fractional Brownian motion environment. Mao

and Liang (2014) evaluated geometric Asian option under fractional Brownian motion frame

work. They derived a closed form for the solution for the Asian power option price. The

pricing of currency options in a mixed fractional Brownian motion in a jump environment

has been studied in Foad and Adem (2014) and Prakasa Rao (2015). Sun and Yan (2012)

discussed use of mixed-fractional models in credit risk pricing. Our aim is to evaluate the

price of Asian power options under a mixed fractional Brownian motion environment.

2 Asian Options

The payoff of an Asian option is determined by the average value of the stock price over a pre-

fixed time interval as it reduces the risk of market manipulation of the underlying instrument

at maturity and reduce the volatility in the option. Furthermore, Asian options are generally

cheaper than the corresponding European options. Asian options are of different types such

as fixed strike price options and floating strike price options. The payoff for a fixed strike

price option is (A(T )−K)+ and (K−A(T ))+ for a call and put option respectively where K

denotes the strike price, T is the strike time and A(T ) is the average price of the underlying
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asset over the predetermined interval. For a floating strike price option, the payoofs are

(S(T ) − A(T ))+ and (A(T ) − S(T ))+, for a call and put option respectively where S(T ) is

the price of stock at time T. Asian options can again be differentiated in to two classes: one

is the arithmetic average, that is,

A(T ) =
1

T

∫ T

0
S(t)dt

and the other is the geometric average

A(T ) = exp{ 1
T

∫ T

0
logS(t)dt}

assuming that the pre-fixed interval for computing the average is the interval [0, T ]. We will

consider evaluation of Asian option price in the case of continuous geometric average with a

fixed strike price in an mfBm environment.

3 Mixed fractional Brownian Motion

We now define the mixed fractional Brownian motion (mfBm) and discuss some of its prop-

erties.

A mixed fractional Brownian motion MH(α, β) is a linear combination of a Brownian

motion and a fractional Brownian motion (fBM) with Hurst index H, that is,

MH
t (α, β) = αWt + βWH

t , 0 ≤ t < ∞(3. 1)

where W is the standard Brownian motion and WH is an independent standard fractional

Brownian motion with Hurst index H and α, β are some real constants not both zero. The

equality here is understood in the sense that the finite dimensional distributions of the process

on the left side of the equation (3.1) are the same as the corresponding finite dimensional

distributions of the process on the right side of the equation (3.1). The process MH(α, β) is

a centered Gaussian process with MH
0 = 0 a.s. and with the covariance function

cov(MH
t ,MH

s ) = α2min(t, s) +
β2

2
(t2H + s2H − |t− s|2H).

The increments of the process MH(α, β) are stationary and self-similar, in the sense that,

for any h > 0,

Mht(α, β)
∆
= MH

t (αh1/2, βhH).(3. 2)

Here ∆ indicates that the random variables on both sides of the equation (3.2) have the

same distribution. The increments of the process are positively correlated if 1
2 < H < 1,
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uncorrelated if H = 1
2 and negatively correlated if 0 < H < 1

2 . The increments of the process

are long-range dependent if and only if 1
2 < H < 1. For more details on the properties of a

mfBm, see Zili (2006) and Prakasa Rao (2010). We assume here after that that the index

H > 3
4 which ensures that the probability measure generated by the process MH(α, β) is

equivalent to the Wiener measure. For simplicity in computations, we assume that α = β = 1

here after. Integration of an adapted process with respect to the mixed fractional Brownian

motion is defined as the sum of the Ito integral of the adapted process with respect to the

Wiener process W and the path-wise integral of the adapted process with respect to the to

the fractional Brownian motion WH . Conditions for the existence and uniqueness of the

solution for a stochastic differential equation (SDE) driven by mfBm are given in Section 3.2

in Mishura (2008). However, we will not be using the SDE model for modeling the stock

price process in the following discussion.

4 Pricing model

We assume that the following assumptions hold:

(i) the dynamics of the underlying stock price follows the mixed fractional Brownian motion

(mfBM) with Hurst index H > 3
4 ;

(ii) the risk-free interest rate r(t) is a non-random function;

(iii) there are no transaction costs in buying or selling the stocks or options, that is, the

market is frictionless;

(iv)the option can be exercised only at the time of maturity.

The fact that H > 3
4 ensures that the market does not admit arbitrage opportunity.

Suppose the stock price process {St, t ≥ 0} satisfies the model

St = S0 exp(g(t) + σWt + σWH
t − 1

2
σ2t− 1

2
σ2t2H), S0 = S(0) > 0, 0 ≤ t ≤ T(4. 1)

for some non-random function g(t) where W is the Brownian motion and WH is an inde-

pendent fBm with Hurst index H > 3
4 . We will first consider the case when the risk-free

interest rate is r and the dividend rate is q. Under the risk neutral probability measure, from

the general theory of option pricing and the fact that the risk-neutral measure is a martin-

gale measure (cf. Shreve (2004); Cheridito (2003)), the dynamics of the stock price process

{S(t), t ≥ 0} will satisfy the

St = S0 exp((r − q)t+ σ(Wt +WH
t )− 1

2
σ2t− 1

2
σ2t2H), 0 ≤ t ≤ T.(4. 2)
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This implies that the stock price S(t) is log-normally distributed with

logS(t) ≃ N(logS(0) + (r − q)t− 1

2
σ2t− 1

2
σ2t2H , σ2t+ σ2t2H).

HereN(m, ν2) denotes the Gaussian distribution with meanm and variance ν2. Let C(S(0), T )

be the price of a European call option at time 0 with strike price K that matures at time T.

Following Theorem 4.1 in Sun (2013), it follows that

C(S(0), T ) = S(0)e−qTΦ(d1)−Ke−rTΦ(d2)(4. 3)

where

d1 =
log(S(0)/K) + ((r − q)T + σ2

2 T + σ2

2 T 2H

√
σ2T + σ2T 2H

d2 = d1 −
√
σ2T + σ2T 2H ,

and Φ(.) denotes the standard normal distribution function. Applying the put-call option

parity formula (cf. Ross (2003), Prakasa Rao (2013)), it is easy to obtain the option price

for a European put option under the above scenario.

5 Pricing for Asian options when the interest and dividend

rates are constant

We now obtain a closed form for the price for the geometric Asian call option with fixed

strike price K and maturity time T.

Theorem 5.1: Suppose the stock price S(t) follows the model given by the equation (4.2)

under the risk-neutral probability measure where the interest rate r and the dividend rate q

are constant over time. Then the price of a geometric Asian call option C(S(0), T ) is given

by

(5. 1)

C(S(0), T ) = S(0) exp{−1

2
(r + q)T − 1

12
σ2T − 1

4(2H + 1)(H + 1)
σ2T 2H}Φ(d1)

−Ke−rTΦ(d2)

where

d2 =
log(S(0)/K) + 1

2(r − q)T − 1
4σ

2T − 1
2(2H+1)σ

2T 2H√
σ2T
3 + σ2T 2H

2(H+1)

(5. 2)
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and

d1 = d2 +

√
σ2T

3
+

σ2T 2H

2(H + 1)
.(5. 3)

Proof : Let

G(T ) =
1

T

∫ T

0
logS(t)dt

and

A(T ) = exp(G(T )).

From earlier computations, it is clear that the random variable G(T ) has Gaussian distribu-

tion under the risk-neutral probability measure. We will now compute its mean and variance

under the risk-neutral probability measure. Let Ẽ denote the expectation and, µ̃ and σ̃2

denote the mean and the variance of the random variable G(T ) under the the risk-neutral

probability measure. Note that

µ̃ = Ẽ[G(T )] =
1

T

∫ T

0
Ẽ[logS(t)] dt(5. 4)

= logS(0) +
1

T

∫ T

0
(r − q)tdt− 1

2T

∫ T

0
[σ2t+ σ2t2H ]dt

= logS(0) +
1

2
(r − q)T − 1

2
(
σ2T

2
+

σ2T 2H

2H + 1
)

and

σ̃2 = V ar[G(T )] = Ẽ[G(T )− µ̃]2(5. 5)

=
1

T 2

∫ T

0

∫ T

0
σ2(Ẽ[W (t)W (τ)] + Ẽ[WH(t)WH(τ)]) dtdτ

(by the independence of the processes W and WH)

=
1

2T 2

∫ T

0

∫ T

0
σ2[(|t|+ |τ | − |t− τ |) + (|t|2H + |τ |2H − |t− τ |2H)] dtdτ

=
1

3
σ2T +

1

2(H + 1)
σ2T 2H .

Hence the random variable A(T ) is log-normally distributed and the random variable logA(T )

has the Gaussian distribution with the mean µ̃ and the variance σ̃2 as obtained above. For

the geometric Asian option, the price of a call option is

C(S(0), T ) = e−rT Ẽ[(A(T )−K)+](5. 6)
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= e−rT
∫
J
(ex −K)

1√
2πσ̃

exp{−(x− µ̃)2

2σ̃2
} dx

where J is the set [x : ex > K]. The following computations give the explicit formula for the

function C(S(0), T ). Let ϕ(.) denote the probability density function of a standard normal

distribution. Observe that

(5. 7)

C(S(0), T ) = e−rT
∫
J
(eµ̃+σ̃y −K)ϕ(y)dy

= e−rT+µ̃+ 1
2
σ̃2

∫ ∞

−d2

1√
2π

e−
1
2
(y−σ̃)2dy

−Ke−rT
∫ ∞

−d2
ϕ(y)dy

= e−rT+µ̃+ 1
2
σ̃2

∫ ∞

−d2−σ̃
ϕ(y)dy −Ke−rTΦ(d2)

= S(0) exp{−1

2
(r + q)T − 1

4
σ2T

+
1

6
σ2T − 1

2(2H + 1)
σ2T 2H +

1

4(H + 1)
σ2T 2H}Φ(d1)−Ke−rTΦ(d2)

= S(0) exp{−1

2
(r + q)T − 1

12
σ2T − 1

4(2H + 1)(H + 1)
σ2T 2H}Φ(d1)−Ke−rTΦ(d2)

where

J = {x : A(T ) > K} = {y : eµ̃+σ̃y > K}(5. 8)

= {y : µ̃+ σ̃y > logK}

= {y : y > −d2}

and d1 and d2 are as defined by (5.3) and (5.2) respectively. This completes the proof of

Theorem 5.1.

Applying similar arguments, it can be shown that the price P (S(0), T ) of a geometric

Asian put option under the mfBm environment is given by

(5. 9)

P (S(0), T ) = Ke−rTΦ(−d2)− S(0) exp{−1

2
(r + q)T − 1

12
σ2T − 1

4(2H + 1)(H + 1)
σ2T 2H}Φ(−d1)

where d1 and d2 are as defined by (5.3) and (5.2) respectively.
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6 Pricing for Asian power options when the interest and div-

idend rates are constant

We will now consider computation of the price of Asian Power call option under mfBm

environment where the payoff for a call option with strike price K and maturity time T is

(An(T )−K)+ for some fixed integer n ≥ 1.

Theorem 6.1: Suppose the stock price S(t) follows the model given by the equation (4.2)

under the risk-neutral probability measure where the interest rate r and the dividend rate

q are constant over time and the payoff function at the time of maturity is (An(T ) −K)+.

Then the price of geometric Asian power call option C(S(0), T ) is given by

(6. 1)

C(S(0), T ) = Sn(0) exp{−rT +
n

2
(r − q)T − n

4
σ2T +

n2

6
σ2T

− n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}Φ(D1)

−Ke−rTΦ(D2)

where

D2 =
log(S(0)/K1/n) + 1

2(r − q)T − 1
4σ

2T − 1
2(2H+1)σ

2T 2H√
σ2T
3 + σ2T 2H

2(H+1)

(6. 2)

and

D1 = D2 +

√
n2σ2T

3
+

n2σ2T 2H

2(H + 1)
.(6. 3)

Proof : For the Asian power option, the payoff function is (An(T )−K)+ = (exp(nG(T ))−
K)+. Following the arguments given in Theorem 5.1, it follows that

C(S(0), T ) = e−rT Ẽ[(An(T )−K)+](6. 4)

= e−rT
∫
J
(enx −K)

1√
2πσ̃

exp{−(x− µ̃)2

2σ̃2
} dx

where J is the set [x : enx > K]. The following computations give an explicit formula for the

function C(S(0), T ). Observe that

(6. 5)
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C(S(0), T ) = e−rT
∫
J
(en(µ̃+σ̃y) −K)ϕ(y)dy

= e−rT+nµ̃
∫ ∞

−D2

1√
2π

enσ̃y−
y2

2 dy −Ke−rT
∫ ∞

−D2

ϕ(y)dy

= e−rT+nµ̃+ 1
2
n2σ̃2

∫ ∞

−D2

1√
2π

e−
1
2
(y−nσ̃)2dy −Ke−rTΦ(D2)

= e−rT+nµ̃+ 1
2
n2σ̃2

Φ(D1)−Ke−rTΦ(D2)

= Sn(0) exp{−rT +
n

2
(r − q)T − n

4
σ2T +

n2

6
σ2T

− n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}Φ(D1)

−Ke−rTΦ(D2)

where D1 and D2 as defined in (6.3) and (6.2) respectively. Note that

J = {x : An(T ) > K} = {y : en(µ̃+σ̃y) > K}(6. 6)

= {y : n(µ̃+ σ̃y) > logK}

= {y : y > −D2}.

This completes the proof of Theorem 6.1.

In a similar way, the price of an Asian power put option with payoff function (K−An(T ))+

is

(6. 7)

P (S(0), T ) = Ke−rTΦ(−D2)

−Sn(0) exp{−rT +
n

2
(r − q)T − n

4
σ2T +

n2

6
σ2T

− n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}Φ(−D1).
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7 Price of Asian Power Option under general non-random

rate and dividend functions

We will now consider computation of the price of Asian call option under mfBm environment

where the payoff for a call option with the strike price K and the maturity time T is (An(T )−
K)+ and the interest rate and the dividend rate are non-random functions r(t) and q(t)

respectively. Under the risk-neutral probability measure, the dynamics of the stock price is

obtained by the equation

S(t) = S(0) exp(

∫ t

0
(r(s)− q(s))ds− 1

2
σ2t− 1

2
σ2t2H + σWt + σWH

t ), 0 ≤ t ≤ T(7. 1)

where W = {Wt, 0 ≤ t ≤ T} is the standard Brownian motion and WH = {WH
t , 0 ≤ t ≤ T}

is an independent standard fBm. Hence the random variable logS(t) has the Gaussian

distribution with mean

logS(0) +

∫ t

0
(r(s)− q(s))ds− 1

2
σ2t− 1

2
σ2t2H

and the variance

σ2t+ σ2t2H .

Note that

A(T ) = exp{ 1
T

∫ T

0
logS(t)dt}.(7. 2)

It can be checked that the random variable logA(T ) has the Gaussian distribution with mean

µ̃ and variance σ̃2, where

µ̃ = logS(0)− 1

4
σ2T − 1

2(2H + 1)
σ2T 2H +

1

T

∫ T

0

∫ t

0
(r(s)− q(s))dsdt(7. 3)

and

σ̃2 =
1

3
σ2T +

1

2(H + 1)
σ2T 2H .(7. 4)

Furthermore the price of Asian power call option is given by

C(S(0), T ) = e−
∫ T

0
r(s)dsẼ[(An(T )−K)+](7. 5)

= e−
∫ T

0
r(s)ds

∫
J
[en(µ̃+σ̃y) −K)ϕ(y)dy
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where J is the set [x : enx > K]. The following computations give an explicit formula for the

function C(S(0), T ). Observe that

(7. 6)

C(S(0), T ) = e−
∫ T

0
r(s)ds+nµ̃

∫ ∞

−D2

1√
2π

enσ̃y−
y2

2 dy

−Ke−
∫ T

0
r(s)ds

∫ ∞

−D2

ϕ(y)dy

= e−
∫ T

0
r(s)ds+nµ̃+ 1

2
n2σ̃2

∫ ∞

−D2

1√
2π

e−
1
2
(y−nσ̃)2dy −Ke−

∫ T

0
r(s)dsΦ(D2)

= exp{−
∫ T

0
r(s)ds+ nµ̃+

1

2
n2σ̃2}Φ(D1)−Ke−

∫ T

0
r(s)dsΦ(D2)

= Sn(0) exp{−
∫ T

0
r(s)ds+

n

T

∫ T

0

∫ t

0
(r(s)− q(s))dsdt

−n

4
σ2T +

n2

6
σ2T − n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}Φ(D1)

−Ke−
∫ T

0
r(s)dsΦ(D2)

where D1 and D2 are given by

(7. 7)

logD2 = log[log(S(0)/K1/n) +
1

T

∫ T

0

∫ t

0
(r(s)− q(s))dsdt− 1

4
σ2T − 1

2(2H + 1)
σ2T 2H ]

− log[

√
σ2T

3
+

σ2T 2H

2(H + 1)
]

and

D1 = D2 +

√
n2σ2T

3
+

n2σ2T 2H

2(H + 1)
.(7. 8)

By similar arguments, it follows that the price of Asian Power put option is given by

(7. 9)

P (S(0), T ) = Ke−
∫ T

0
r(s)dsΦ(−D2)

−Sn(0) exp{−
∫ T

0
r(s)ds+

n

T

∫ T

0

∫ t

0
(r(s)− q(s))dsdt

−n

4
σ2T +

n2

6
σ2T − n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}Φ(−D1).
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It is now easy to see that the put-call option parity formula for Asian power options with

constant interest rate r and constant dividend rate q is given by

(7. 10)

C(S(0), T )− P (S(0), T ) = Sn(0) exp{−rT +
n

2
(r − q)T − n

4
σ2T +

n2

6
σ2T

− n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}

−Ke−rT

and the put-call option parity formula for Asian power options with non-constant interest

rate r(t) and dividend rate q(t) is given by

(7. 11)

C(S(0), T )− P (S(0), T ) = Sn(0) exp{−
∫ T

0
r(s)ds+

n

T

∫ T

0

∫ t

0
(r(s)− q(s))dsdt

−n

4
σ2T +

n2

6
σ2T − n

2(2H + 1)
σ2T 2H +

n2

4(H + 1)
σ2T 2H}

−K exp{−
∫ T

0
r(s)ds}.
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