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Abstract

We present an algorithm for modelling flow cytometry data in the presence of large
inter-sample variation. Large-scale cytometry datasets often exhibit some within-class
variation due to technical effects such as instrumental differences and variations in data
acquisition, as well as subtle biological heterogeneity within the class of samples. Failure
to account for such variations in the model may lead to inaccurate matching of populations
across a batch of samples and poor performance in classification of unlabelled samples. In
this paper, we describe the Joint Clustering and Matching (JCM) procedure for simulta-
neous segmentation and alignment of cell populations across multiple samples. Under the
JCM framework, a multivariate mixture distribution is used to model the distribution of
the expressions of a fixed set of markers for each cell in a sample such that the components
in the mixture model may correspond to the various populations of cells, which have sim-
ilar expressions of markers (that is, clusters), in the composition of the sample. For each
class of samples, an overall class template is formed by the adoption of random-effects
terms to model the inter-sample variation within a class. The construction of a paramet-
ric template for each class allows for direct quantification of the differences between the
template and each sample, and also between each pair of samples, both within or between
classes. The classification of a new unclassified sample is then undertaken by assigning
the unclassified sample to the class that minimizes the distance between its fitted mixture
density and each class density as provided by the class templates. We use a symmetric
form of the Kullback-Leibler distance for this purpose. We show and demonstrate on four
real datasets how the JCM procedure can be used to carry out the tasks of automated
clustering and alignment of cell populations, and supervised classification of samples.

Key terms Flow cytometry, Classification, Class template, Inter-sample variation, Clus-
tering, Matching, Skew mixture models, EM algorithm, JCM

1 Introduction

Flow cytometry (FCM) is a powerful tool in clinical diagnosis of health disorders, in particular,
immunological diseases. It offers rapid high-throughput measurements of multiple characteris-
tics on every cell in a sample, enabling biologists to study a variety of biological processes at
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the cellular level. A critical component in the pipeline of flow cytometry data analysis is the
identification of cell populations from the multidimensional FCM dataset, currently performed
manually by visually separating regions or gates of interest on a series of sequential bivariate
projections of the data, a process known as gating. However, this approach has many prob-
lems and limitations, including variability between different analysts, non-standardization and
non-reproducibility of results, an unrealistic assumption that biological relationships between
the markers exist only in the projected low-dimensional space and, most importantly, non-
scalability to high-dimensional analysis, especially involving a large number of samples. With
the advancement of technology, modern day flow cytometers allow simultaneous measurements
of many markers on millions of cells, with some latest revolutionary mass cytometers capable
of extending this up to 100 simultaneous parameters [1, 2]. As the number of markers in-
creases, the number of bivariate projections increase rapidly. This renders conventional manual
analysis practically infeasible for unbiased FCM analysis. Due to this and the subjective and
time-consuming nature of this approach, recent efforts have turned to the development of com-
putational methods for the analysis of high-dimensional flow cytometry data to automate the
gating process; see [3] for a recent account.

Among these methods, mixture models have been widely employed as the underlying mech-
anism for characterizing the heterogeneous cell populations [4, 5, 6, 7, 8, 9, 10, 11], taking
advantage of the convenient and formal framework offered by a model-based approach to mod-
elling these complex and multimodal datasets. Using this approach, the FCM data can be
conceptualized as a mixture of populations each of which consists of cells with similar expres-
sions, the distribution of which can be characterized by a parametric density. The task of
cell-population identification then translates directly to the classical problem of multivariate
model-based clustering. It is well known that data generated from flow cytometric studies
are often asymmetrically distributed, multimodal, as well as having longer and/or heavier tails
than normal. To accommodate this, several methods use a mixture of mixtures approach [7, 12]
where a final cluster may consist of more than one mixture component, while some others adopt
mixture models with skew distributions as components [4, 5, 7] to enable a single component
distribution to correspond to a cluster.

In addition to cell-population identification, there is also the challenging task of aligning or
matching these populations across multiple samples. The classification of individual samples
(for example, predicting the disease state of an unlabelled sample) presents another challenging
task in the pipeline of flow cytometric data analysis. To this end, several techniques have been
proposed recently in the literature, most of them based on extensions of algorithms for the
cell-population identification mentioned above. In particular, many of these methods adopt a
support vector machine (SVM) as their classifier, perhaps due to its simplicity, convenience,
and computational efficiency. For example, the sample classifiers of flowBin [3], SWIFT [12],
ASPIRE [8], and flowPeaks [13] are all based on a SVM, trained on some selected features from
their respective model fitted to the data. Typically, the cluster proportions (size) are used as the
feature vector under these settings. An allocation of a sample to one of the predefined classes of
samples is then performed on the basis of this feature vector using a classifier formed from the
available training data consisting of observations on the feature vector of known classification
with respect to the classes. Sometimes different types of classifiers are used besides the SVM;
for example, nearest neighbour in PBSC [3], and regularized regression in Citrus [14]. However,
in all of these methods, only selected features are used in the post-hoc classification task.
Hence their classifiers are based solely on the information in these features, ignoring a variety
of other features of the underlying distributions such as their shapes or tails that may represent
biologically interesting phenomena.
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Here we present the JCM (Joint Clustering and Matching) procedure for the supervised
classification of FCM samples with respect to a number of predefined classes. Unlike the above
mentioned methods, JCM adopts a measure to quantify the similarity or dissimilarity between
the fitted parametric models in terms of differences between the class templates representing the
class densities of the markers being used. Based on the calculation of distance between a pair
of samples modelled by JCM as mixture distributions, their high-dimensional, and potentially
multi-modal, forms can be compared with precision and rigour. Indeed, the matrix of such
pairwise distances for a given class of samples can be used to quantify the overall inter-sample
variation, and we describe tools for visualizing the same. The distance-based approach provides
a more complete assessment of the differences between the samples and the templates for
different classes and so should lead to more objective discrimination among the classes.

In constructing a template for the density of the markers for a given class of samples, JCM
models the inter-sample variation in a class through the adoption of a random-effects model.
With the exception of ASPIRE, the methods described above do not allow for possible inter-
sample variations. They either explicitly or implicitly assume the cell populations to have the
same underlying distribution across all samples. In particular, the location (or mode) and the
shape of the distribution of these populations are taken to be the same. These assumptions are
not realistic given that the cell populations typically vary significantly across different samples;
see, for example, the Lymphoma dataset described in Section 2.1.2. These assumptions are
relaxed within the JCM framework by modelling each sample as an instance of a class template,
possibly transformed with a flexible amount of variation. The latter is governed by a random-
effects model, thus allowing one to establish a direct parametric correspondence between the
cell populations in a sample and their corresponding components in the mixture model for
the class template. This formulation also means that the cell populations are automatically
matched across different samples without needing any further post-processing.

Previously in [7], the effectiveness of JCM in clustering cells within a given sample and
aligning the cell populations across a batch of samples was illustrated in three experiments,
where JCM provided excellent results. The first two of these experiments involved multiple
samples and (multiplexed) staining panels, as well as multiple time-points and/or classes. In
one of these two experiments, the B-cell receptor (BCR) one, which is also examined here (but
reformulated as a classification problem), JCM identified a spatio-temporal signature of BCR
signaling that improved the distinction between the two classes of patients previously reported
in [15]. In the third illustration, it was demonstrated how JCM was able to identify cell popu-
lations in a batch of Diffuse Large B-Cell Lymphoma (DLBCL) samples from the FlowCAP-I
challenge [3] that closely matched the gated populations identified by expert analysts. In this
paper, we focus on the application of the JCM procedure in the subsequent stage of the flow
cytometry pipeline – sample classification – and the modelling of the inter-sample variation
within a batch of samples.

2 Materials and Methods

2.1 Overview of the Datasets

We shall demonstrate the effectiveness of JCM in automated gating and supervised classification
of flow cytometry samples using four real benchmark datasets described here.
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2.1.1 West Nile Virus (WNV) dataset

Thirteen blood samples were acquired from patients diagnosed with symptomatic West Nile
Virus (WNV). These samples were stained to measure the expressions of CD4, IL17, and CFSE
markers. Between 100,000 and 1,000,000 events were recorded for each sample. The samples
were manually analyzed and gated. To demonstrate the ability of JCM in clustering samples to
identify cell populations, we measure the level of agreement between the automated approach
of JCM with manual gating in terms of the misclassification rate ( MCR). Results are to be
compared also with competing algorithms as mentioned above. For comparison purposes, we
assume the partitions given by manual gating to be the ground truth.

2.1.2 Lymphoma dataset

Between 2003 and 2008, the British Columbia Cancer Agency collected samples from randomly
selected lymph node biopsies from patients with diffuse large B-cell lymphoma (DLBCL). Each
sample was stained for measuring the expressions of three surface markers, CD3, CD5, and
CD19. This dataset contains 60 samples, with each sample containing between 3,000 and
100,000 events. This dataset is known to exhibit considerable inter-sample variation due to
a voltage change in the instrument settings in 2005. We use this dataset to illustrate the
usefulness of random effects modelling in handling datasets with large inter-sample variation.

2.1.3 B-cell receptor (BCR) dataset

The B-cell receptor (BCR) dataset contains flow cytometric measurements from 28 patients
diagnosed with follicular lymphoma (FL). In brief, each sample was split into eight multiplexed
panels for staining by F(ab’)2 against the BCR heavy chain. For each panel, a pair of lineage
markers (common to all panels) was used to label the B-cells, while another pair (different in
all panels) of phospho-markers was used to measure BCR signalling characteristics, totalling
18 different markers across all panels. Measurements were recorded for all panels at basal
(unstimulated) and again at 4 minutes after stimulation. Further technical details on this
experiment and the processing of samples can be found in the Supplementary Methods of [15].
It was observed in [16] that the FL patients can be stratified into two classes that have distinctly
different survival outcomes, which is linked to the presence or absence of a subpopulation of
B-cells known as the Lymphoma Negative Prognostic (LNP) cells. For our illustration, the
dataset is randomly partitioned into a training and test set with equal number of samples in
each set. The task for the automated algorithms is to determine the class of FL for each patient,
based on the training samples provided.

2.1.4 Acute Myeloid Leukemia (AML) dataset

As part of the FlowCAP-II Sample Classification challenge [3], the Acute Myeloid Leukemia
(AML) dataset was split equally into a training set and a test set. Peripheral blood or bone
marrow samples from a total of 359 patients were collected; 316 were healthy patients and 43
were diagnosed with AML [3]. Due to the large number of markers used, the sample collected
from each patient was assayed into eight tubes for staining by different markers combinations,
with five markers from each tube. In addition, the forward scatter (FS) and side scatter (SS)
were also available for each tube, yielding a seven-dimensional dataset. This totalled to 2872
data files for analysis. The first and last tube (i.e., tubes 1 and 8) were controls and hence not
used in our analysis. The data have been transformed logarithmically for the SS measurements
and all fluorescent markers, while the FS measurements remained linear. All channels have also
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been scaled to the unit interval during preprocessing. The dataset is available publicly from
http://flowrepository.org/id/FR-FCM-ZZYA. For training, half of the dataset along with
their known labels (156 healthy patients and 23 AML patients) was used. The challenge called
for the construction of a classifier to label the samples in the test set (the other half consisting
of data from 180 patients).

2.2 The JCM algorithm

The JCM methodology is based on a multi-level model-based clustering approach, where each
sample is represented by a flexible finite mixture model. The latter is intrinsically linked to
a class template through a random-effects model (REM). In brief, the JCM approach can be
conceptualized as a two-level hierarchical model consisting of a lower sample-specific level and
a higher batch-specific level. At the sample-specific level, each cell population in a sample is
characterized by a parametric multivariate distribution. A sample with multiple populations
can thus be viewed as having a mixture distribution. Note that each sample has its own mixture
model, implying that all the component parameters are specific to that sample. It should be
pointed out that this is significantly different to some of the other available approaches, such
as SWIFT and HDPGMM, that require all samples to share the same component parameters
(except the mixing proportions). Our approach gives JCM more flexibility in handling inter-
sample variations. At the batch-specific level, an entire batch of samples can be modelled by
a parametric multivariate template that describes the overall characteristics of the batch. To
construct a representative template, JCM assumes that each sample-specific mixture model
can be effectively modelled as an instance of a batch-specific (class) template with subtle inter-
sample variations. This template is taken to be representative of the class from which the batch
of samples is assumed to have been drawn. The class template is constructed by adopting a
random-effects approach where individual mixture models are linked to the batch mixture
models through a flexible affine transformation. A further advantage of this approach is that
each cluster in a sample is automatically registered with respect to the corresponding cluster
of the template. A third level can be envisaged when between-class comparisons in the case of
multiple classes are made in a large cohort analysis. This additional higher level can be used
to study intra-class relationships in situations where, for example, multiple disease types are
present, individuals are measured at different time points, or multiple experiment conditions are
analyzed. With the availability of an overall template for each class, classification of unlabelled
samples can be easily performed by comparing its similarity with each class template. We
describe here further technical details of each level.

2.2.1 Modelling of individual samples

As mentioned above, each sample is modelled by a finite mixture model. The JCM procedure
provides two options for parametric densities, the default option using the multivariate skew t

(MST) distribution and an option using its symmetric version, the multivariate t-distribution.
The MST distribution has additional parameters for handling heavy tails and skewness, ren-
dering it well suited for modelling non-elliptical and asymmetrical clusters that are typical in
flow cytometry data. Moreover, it formally encompasses the multivariate normal, t, and skew
normal distributions as special or limiting cases.

To establish notation, let the p-dimensional vector yjk ∈ R
p contain the measurements (on

p markers) of cell j in sample k, where j = 1, . . . , nk and k = 1, . . . , K. Here nk denotes the
total number of cells in sample k, and K denotes the total number of samples. We let g denote
the number of components in the mixture model. It is assumed that each cell in the jth sample
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belongs to one of the g components. Then the density of yjk can be expressed as

f(yjk;Ψk) =

g
∑

h=1

πhkf(yjk; θhk), (1)

where π1k, . . . , πgk denote the mixing proportions which are non-negative and sum to one. Here,
f(yjk; θhk) denotes a component density with parameters specified by θhk (h = 1, . . . , g).
The vector Ψk consists of all the unknown parameters of the mixture model, and is given
by Ψk = (π1k, . . . , πg−1,k,θ

T
1k, . . . ,θ

T
gk)

T , where the superscript T denotes vector or matrix
transpose. In practice, the optimal value of g can either be specified a priori, or inferred from
the data using some information criterion such the Bayesian Information Criterion (BIC).

Regarding the choice of the component densities in (1), JCM has options: (i) the multivariate
t-distribution and (ii) a multivariate skew t-distribution. In the former case, the t-distribution
allows for heavier tails than the normal distribution, thus providing a more robust approach to
traditional Gaussian mixture modelling (GMM). The t-component density is given by

tp(yjk; µjhk,Σhk, νhk) =
Γ(νhk+p

2
)

(πνhk)
p

2 |Σhk|
1

2 Γ(νhk

2
)

(

1 +
dh(yjk)

νhk

)

−

νhk+p

2

, (2)

where µjhk is a (cell-specific) location parameter, Σhk is a positive-definite scale matrix, νhk is

the degrees of freedom, d(yjk) = (yjk−µjhk)
TΣ−1

hk (yjk−µjhk) denotes the squared Mahalanobis
distance between yjk and µjhk (with Σhk as the scale matrix), and Γ(·) the Gamma function.
The degrees of freedom νhk acts as a tuning parameter for regulating the thickness of the tails of
the t-distribution, which can be inferred from the data. The second option for f(·) provided by
JCM is a skew version of (2), with an additional vector δhk consisting of p skewness parameters
for handling non-symmetric distributional shapes. In recent years, many different versions of
the skew t-distribution have been proposed; see [17] for an overview on this topic. For our
purposes, we shall adopt the popular version as proposed by [18]. Following the notation in [4],
the skew t-density can be expressed as

STp(yjk; µjhk,Σhk, δhk, νhk)

= 2tp(yjk; µjhk,Σhk, νhk)

T1

(

δT
hkΩ

−1

hk (yjk − µhk)

√

(νhk + p)

νhk + dh(yjk)
; 0, 1 − δT

hkΩ
−1

hk δhk, νhk + p

)

, (3)

where T1 denotes the (scalar) t-distribution function, and Ωhk = Σhk + δhkδ
T
hk. The estimation

of the parameters of a mixture model can be carried out using the expectation-maximization
(EM) algorithm. Specific details for finite mixtures of (2) can be found in [19], and in [4] for
finite mixtures of (3).

2.2.2 Parametric batch-specific (class) template

To form a batch-specific (class) template, inter-sample variations are modelled through the
introduction of random-effects (RE) terms that specify how sample-specific component distri-
butions may vary from an overall representative mixture model (that is, the template model).
More specifically, these RE terms govern how the component-location parameters µhk relate to
the batch location parameter µh. We proceed by assuming that each µhk is an affine transfor-
mation of µh, that is,

µhk = ahk ◦ µh + bhk1p, (4)
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where ◦ denotes the Hadamard (or elementwise) product, 1p denotes a p-dimensional vector
with all elements being one, and the scaling and translation RE terms are independent and
given by

ahk ∼ Np(1p, ξ1h),

bhk ∼ N1(0, ξ
2

2h), (5)

respectively. Estimation of the parameters of the mixture model with (4) and (2) or (3) can
be implemented using the EM algorithm. The technical details of the fitting algorithm for our
JCM model have been described in the Supplementary Information of [7].

2.2.3 Classification of new samples

In the case of multiple classes, a template can be formed for each class with JCM, using
the available training data (that is, the samples of known origin with respect to the classes).
As can be observed from (1) and (4), a JCM template is characterized parametrically as a
mixture model similar to the sample-specific model fitted to each sample. This facilitates the
quantitative comparison between different templates. Once the class templates are constructed,
they can be quantitatively compared using a range of information-based measures, such as the
Kullback-Leibler (KL) distance. In this approach, a new sample is fitted with a mixture model
and its KL divergence from each of the templates is calculated. The new sample is then classified
to the class associated with the smallest KL distance. We use a symmetric combination of the
KL information.

More specifically, the KL distance between two continuous densities f1(y) and f2(y) is
defined by

KL(f1, f2) =

∫

∞

−∞

f1(y) log
f1(y)

f2(y)
dy. (6)

As the KL distance is not a symmetric measure, that is KL(f1, f2) 6= KL(f2, f1), we use the
mean of KL(f1, f2) and KL(f2, f1) as our distance measure. When a new or unlabelled sample
is presented to JCM, a mixture model is fitted to obtain a parametric representation of the
sample.

Unlike ASPIRE and Citrus that use only certain features calculated from the predicted
clusters for each sample, the classification approach of JCM is based on the fitted densities for
the class templates rather than their selected features. More specifically, these other methods
calculate features such as the proportions and the median of some or all of the markers for the
identified clusters as a simplified representation of each sample. A classifier is then built on
these features using a support vector machine (SVM) (as in ASPIRE) or based on regularized
regression (as in Citrus). As such, the accuracy of these classifiers can be quite sensitive to
the choice of features, and is critically dependent on the distinctiveness of the selected features
across the different classes. In contrast, JCM does not rely on any particular selected features
from the fitted model, but rather uses the entire fit provided by the model by proceeding on the
basis of the relative size of the class densities provided by the templates. When an unlabelled
sample is presented to JCM, an independently fitted model of the sample is directly compared
to the estimate of the parametric form of the template density for each class. The KL distance
provides a measure of this difference between the estimated density of the unclassified sample
and the fitted template density for each class.
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3 Results

The effectiveness of the JCM approach is illustrated on four separate datasets and compared
to a number of other available methods. In the first two datasets, we are interested in the
classification of flow cytometry samples into two classes. The first dataset was part of the
FlowCAP-II competition, while the second has been previously analyzed in [7, 15]. For the
final two datasets, we examine the performance of JCM and other competing algorithms in
identifying cell populations in the presence of within-class inter-sample variations. In the WNV
dataset, only the abundance of a particular population was observed to be varying greatly across
the samples; whereas for the Lymphoma dataset, the variations were much more profound.

3.1 Performance evaluation measures

To evaluate the classification performance of JCM, we compute a number of measures as
adopted in [3] namely sensitivity (or recall), specificity, accuracy, precision, and F -measure.
Let TP , TN , FP , and FN denote the number of true positives, true negatives, false positives,
and false negatives, respectively. These measures are defined as

sensitivity =
TP

TP + FN
, (7)

specificity =
TN

TN + FP
, (8)

accuracy =
TP + TN

TP + TN + FP + FN
, (9)

precision =
TP

TP + FP
, (10)

F -measure = 2 ×
precision × sensitivity

precision + sensitivity
. (11)

In addition, we report in the second last column of Tables 3 and 2 the adjusted Rand index
(ARI) [20], a popular measure of cluster agreement in the model-based clustering literature.
The performance of the JCM model is also evaluated by the area under receiver operating
characteristic (ROC) curve (AUC), reported in the last column of Table 3.

For the West Nile Virus dataset, the clustering performance of JCM is assessed using the
misclassification rate (MCR), the standard measure used in statistics to evaluate the accuracy
of clustering and/or classification algorithms against true labels. This MCR is based on the
proportion of mislablled observations, calculated for each permutation of the predicted cluster
labels against the labels given by manual gating and the rate reported is the minimum value
over all such permutations.

3.2 Other methods

The performance of the JCM procedure is compared with some other available methods for auto-
mated clustering and sample classification, including HDPGMM [6], flowMatch[21], Citrus[14],
and ASPIRE[8]. Like FLAME, JCM is based on finite mixtures of skew distributions. However,
FLAME performs cluster alignment across samples in a post-hoc fashion using graph-matching
techniques. In contrast, the multi-level modelling strategy of JCM allows for simultaneous clus-
tering and matching cell populations across samples in a much more natural manner. Moreover,
the availability of a parametric characterization of the class templates allows for the classifica-
tion of unlabelled samples to be undertaken on the basis of differences between their densities
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and the class densities provided by the templates. Following FLAME, Azad et al. [21] proposed
flowMatch for classifying samples based on templates. The flowMatch procedure treats each
sample as a leaf node of a template tree, then performs agglomerative hierarchical clustering
of the nodes to obtain a template tree, using a similarity measure based on the KL distance.
However, with flowMatch, each node in the template tree is characterized by a single normal
mixture model. Also, cluster matching is performed between two nodes before calculating their
similarity measure. In contrast, JCM automatically matches the clusters across the samples
and/or templates in the fitting process. The KL distance can be calculated directly on the
fitted models under the JCM framework.

Recently, Cron et al. [6] proposed a hierarchical version (HDPGMM) of the Dirichlet process
Gaussian mixture model (DPGMM) for the automatic alignment of cell populations across a
batch of samples. Their model has an additional layer above the DPGMM models fitted to each
sample, placing a hierarchical prior over the base distribution to link these individual DPG-
MMs. The HDPGMM model assumes that all samples share the same component parameters
with the exception of the mixing proportions. In a more recent contribution, Dundar et al. [8]
extended the HDPGMM model to allow for inter-sample random-effects using a much similar
conceptual strategy to JCM. This model, known as ASPIRE, relaxes the requirement for com-
ponent means to be the same across samples by assuming that they deviate probabilistically
from the corresponding template means under a random-effects model. Using this approach,
a global template is readily constructed without the need for post-hoc mode clustering as in
HDPGMM.

Citrus [14] is another computational tool for sample classification and cell-population iden-
tification. Unlike the above mentioned methods, Citrus proceeds by a hierarchical clustering of
cells selected from each sample, and the classification of samples is based on regression methods
on selected features. For scalability, Citrus applies hierarchical clustering to aggregated data
consisting of randomly sampled cells from each sample rather than the data pooled from all
samples. This approach removes the need for clustering individual samples, and automatically
identifies local and global clusters, as well as matching them across different samples. From the
hierarchical clustering of the aggregated data, the proportion of each sample in each cluster is
calculated. For each sample, a feature vector is formed consisting of the cluster proportions
along with other features of the sample such as the median value of each marker.

3.3 Experiment 1: Automated gating of WNV samples

We analyzed the 13 samples in the WNV dataset as a batch with JCM and assess its ability to
reidentify the manually gated populations in each sample. With this dataset, experts identified
four cell populations in manual analysis. Each sample was examined individually, and the
populations were matched across the samples in a subsequent step. Four examples are shown in
Figure 1, where the different populations as identified by manual gating are displayed in different
colours. As can be observed in Figure 1(A), while the relative locations of these populations
were quite similar across the samples, the abundance of the CD4+CFSE- populations varies
considerably between samples, ranging from 0% (sample012) to 76% (sample013); see Figure
1(B). With the exception of sample013, the other three populations have very similar abundance
across the samples. JCM and five competing algorithms (ASPIRE, HDPGMM, flowMatch,
flowPeaks, and SWIFT) were applied to this dataset such that their templates have four global
clusters. The template obtained by JCM as shown in Figure 1(C) suggests that the location of
the four populations are well recovered. Inspection of the models fitted to each sample by JCM
(not shown) reveals that they are very similar to the template, but subtle variations can be
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observed in the mixing proportions. Indeed, the JCM model provides a quantitative measure
of the inter-sample variations in the batch as part of its model fitting procedure. As described
in Section 2.2.2, these are given in terms of the variance of the RE terms, namely ξ1h and
ξ2h (h = 1, . . . , 4). The smaller the values of these parameters, the closer the location of the
clusters in each sample is relative to that of the template. The values of ξ1h are estimated to
be

ξ11 =





0.095 0.000 0.000
0.000 0.079 0.000
0.000 0.000 0.084



 , ξ12 =





0.057 0.000 0.000
0.000 0.061 0.000
0.000 0.000 0.001



 ,

ξ13 =





0.004 0.000 0.000
0.000 0.034 0.000
0.000 0.000 0.015



 , ξ14 =





0.004 0.000 0.000
0.000 0.011 0.000
0.000 0.000 0.000



 ,

respectively, for the CD4+CFSE-, CD4-CFSE-, CD4-CFSE+, and CD4+CFSE+ populations
in this dataset. Similarly, the value of ξ2h are all small (around 0.1), giving an indication that
the location of the clusters remains fairly constant across the samples.

On comparing the clustering results of these methods against manual analysis (Table 1),
it can be observed that JCM had the lowest average MCR of 0.1243. In 8 of the 13 samples,
JCM achieved the lowest MCR compared the other five algorithms. Note that as the location
of populations remains similar across the sample, algorithms that employ pooling (such as
flowPeaks and SWIFT) should not be disadvantaged. Indeed, algorithms such as HDPGMM
are designed to adapt to this situation. This is reflected in the average MCR of these algorithms,
where HDPGMM, flowPeaks, and SWIFT were quite similar and were reasonably close to the
performance of JCM. The small difference in the performance of these algorithm may possibly
be attributed to the slight variations in the shape of the CD4+CFSE- population across the
samples. Looking at the case of sample012, the absence of the CD4+CFSE- population did not
seem to have a great impact on the clustering performance of JCM, where it achieved a low
MCR of 0.0742, being just under half the MCR of the next lowest MCR of 0.1815 (obtained
by flowPeaks). With a relatively high average MCR above 0.2, the ASPIRE and flowMatch
algorithms have poor performance compared to the other algorithms in this illustration.

3.4 Experiment 2: Identification and matching of cell populations
in Lymphoma samples

To illustrate the ability of JCM to model and match clusters across samples in the presence of
large inter-sample variations, we consider 30 random samples from the Lymphoma dataset. It
is known that a subset of these samples was influenced by the voltage change in 2005, causing a
shift in the sub-populations for the CD3 and CD5 channels. Examples from the the dataset are
shown in the first column of Figure 2, where noticeable differences can be observed across the
samples for the location of the two clusters. In addition, the distribution of the clusters varies
considerably across the samples, and some clusters exhibit non-normal features. Of interest
here is how well the automated algorithms can identify and discriminate the CD3+CD5+ and
CD3-CD5- populations in each sample and correctly match them across the samples.

We applied five algorithms (JCM, flowMatch, flowPeaks, SWIFT, and HDPGMM) to this
dataset and compared their predicted clustering. The algorithms JCM, SWIFT, and HDPMM
identified two global clusters, whereas flowPeaks and flowMatch identified three clusters. A
visual inspection of the results given by flowPeaks (column 4 of Figure 2) indicates that the
pink cluster consist mainly of cells that expressed no or very low levels of CD5. If they can
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be viewed as outlying observations of the CD3-CD5- cluster of cells, then flowPeaks can be
considered to have only two global clusters. Regarding the matching of populations across
samples, JCM and HDPGMM automatically register cell populations across samples. The
flowMatch procedure perform population matching in a post-hoc step. The flowPeaks and
SWIFT procedures employ data pooling and hence no matching is required.

Focusing first on samples with well-separated clusters, such as sample008 (row 2) and sam-
ple009 (row 3) of Figure 2, most of the algorithms can discriminate between the two clusters
reasonably well. For sample008, it can be observed that with the exception of SWIFT and
flowMatch, the other three algorithms can identify the CD3+CD5+ population (displayed as
green dots in Figure 2). For sample009, flowPeaks and HDPGMM mislabeled a minor portion
of CD3+CD5+ cells. In both these samples, flowMatch consistently mislabelled the tail portion
of the CD3-CD5- population. Looking at a case where the two populations are close together
(sample023, row 5, of Figure 2), flowPeaks and HDPGMM failed to separate these populations
and labelled them as one cluster. SWIFT provided a partition into two clusters, but have
clearly mislabelled a large portion of the CD3-CD5- population residing in upper tail region.
The flowMatch algorithm modelled the CD3-CD5- populations with with two components. On
merging these components to give two meta clusters, flowMatch provides a reasonable cluster-
ing of the data. There is, however, still a small portion of CD3-CD5- cells incorrectly labelled
as CD3+CD5+. These are located near the tip of the tail of the CD3-CD5- population. As can
be observed in Figure 2, JCM can capture both populations accurately and adapt more closely
to the asymmetric shape of these clusters.

In the case where the CD3+CD5+ population is highly abundant compared to the CD3-
CD5- population (sample013, row 4 of Figure 2), flowMatch can identify the abundant popu-
lation as one cluster, but splits the less abundant population into two clusters. Similar results
can be observed in cases where the CD3-CD5- population is relatively more abundant (sam-
ple001 and sample027 of Figure 2). In sample001, however, cells in the tail region of the
CD3-CD5- population were incorrectly labelled by flowMatch. The flowPeaks and HDPGMM
algorithms performed reasonably well in this sample, but are disappointing for sample013 and
sample027. The poor performance in the latter two samples can be attributed to the large shift
of the CD3+CD5+ population. In contrast, JCM was able to model the distribution of both
populations with good precision in all three cases.

It is of interest to note that as flowPeaks and SWIFT perform clustering on the pooled
data, all samples share the same classification boundaries. In effect, this is similar to drawing
static gates on all samples, where the gates are based on the clustering of the pooled data.
The HDPGMM model is designed to cater for some inter-sample variations. However, these
are restricted to the mixing proportions only. Hence, the classification boundary remains the
same for all samples. As can be observed in Figure 2, the static gates given by flowPeaks and
HDPGMM failed to capture the CD3+CD5+ population in sample013, sample023, and sam-
ple027 due to the drastic shifts in the CD5 channel. For SWIFT, it resulted in the mislabelling
of a large portion of the CD3-CD5- population in all samples.

Sample027 shows an example of a case where one of the population exhibit evident skewness.
In this case, flowPeaks, SWIFT, and HDPGMM have difficulty identifying cells belonging to
the CD3-CD5- population, especially those in the tail of the distribution. As mentioned above,
with flowMatch, this population is partitioned into two components. However, even after
merging, it cannot accurately separate the two populations around the tail region. The pink
component contains both the CD3-CD5- cells that lies in the tail and also some cells from the
more dispersed CD3+CD5+ population. In contrast, JCM provided a much more appropriate
solution.
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The results suggests that all algorithms but JCM failed to recover accurately the distribution
of two populations in this dataset. Algorithms that rely on data pooling for handling a batch
of samples (for example, flowPeaks and SWIFT) suffer significantly from the large variations
between samples. These algorithms can be considered as applying a static gate to all samples.
As a result, when the CD3+CD5+ population is located close to the CD3-CD5- population,
SWIFT failed to identify a large portion of CD3-CD5- cells whereas flowPeaks can identify only
a very small portion of CD3+CD5+ cells. While HDPGMM operates on individual samples
and allows for some inter-sample variations, it failed to distinguish between the two populations
in these cases due to its assumption that local clusters shares common location and scale
parameters across all samples. Hence, this algorithm is effectively assuming static gates. The
flowMatch algorithm also operates on each sample individually, but matching is performed in a
post-hoc manner similar to FLAME. The allows for greater flexibility in terms of the location
and shape of the local clusters, but the matching of local clusters show some limitations. To
consider this further here, we examined the initial partitions given by the local clusters of
flowMatch. It revealed that all samples have four local clusters. The extra cluster lies between
the green and pink clusters and was merged with the green cluster on matching. Owing to the
large inter-sample variation, this extra cluster consists of CD3-CD5- cells in some samples (for
example, in the first three examples shown in Figure 2), and CD3+CD5+ cells in the other
samples (due to the shift of this population in these samples). However, as this cluster have
similar location across the sample and are closer to the green cluster, they were incorporated
into the CD3+CD5+ meta-cluster during the matching step.

It is of interest to note that for these four algorithms, initial partitions of the data is
based on normal mixture models and the final partitions are obtained by merging some of
the components. Although this allows for some degree of flexibility in capturing non-normal
clusters, it has significant limitations in the presence of random effects; see sample027 as an
example. Unlike these algorithms, the skew t-mixture model adopted by JCM can naturally
adapt to the asymmetric shape of the clusters and, by incorporating random-effects terms in the
model specification, JCM can accommodate these samples in the presence of large inter-sample
variations.

3.5 Experiment 3: Classification of FL patients

In [15], the FL patients were manually analyzed and classified into LNP− and LNP+ classes.
Here, we applied seven algorithms (JCM, ASPIRE, Citrus, flowMatch, flowPeaks, HDPGMM,
and SWIFT) to this dataset. For training, half of the data was provided to each algorithm,
together with their class labels. The BCR dataset presents a more challenging case for the
algorithms, as the distinction between the classes is noticeably less pronounced than the AML
dataset. In particular, it can be observed from Figure 3 that the distribution of the markers on
the cells appears to be similar between an LNP− (Figure 3A) and LNP+ (Figure 3B) sample.
Perhaps the greatest difference occurs in the plot of the cells for the markers p-STAT5 and
p.PLCg2 in Figures 3A3 and 3B3, where the shape of the distribution of the LNP− samples is
asymmetrical compared to the LNP+ sample.

The procedures JCM, ASPIRE, flowMatch, flowPeaks, HDPGMM, and SWIFT identified
5, 3, 4, 22, 16, and 1 clusters, respectively, with their templates. Their performance measures
are reported in Table 2. It can be observed that JCM achieved the highest F -measure value of
0.71. Citrus and HDPGMM produced results that are quite similar to each other, yielding the
same specificity and AUC. However, HDPGMM had a lower sensitivity, accuracy, and precision.
With a zero sensitivity and precision, the performance of flowMatch, ASPIRE, flowPeaks, and
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SWIFT is relatively poor for this dataset. A closer look at the predicted classification labels
given by ASPIRE, flowPeaks, and SWIFT reveals that they failed to discriminate between the
two classes of patients, classifying all samples into one class.

3.6 Experiment 4: Classification of AML patients

We report in Table 3 the performance measures of JCM and other algorithms on the AML
dataset. Since HDPGMM, flowPeaks, and SWIFT do not provide a strategy for sample clas-
sification, we follow a similar approach to [8]. For HDPGMM and flowPeaks, we extract the
proportions of global clusters from each sample to form a feature vector to be used for training
a SVM based on the labels from the training set. For SWIFT, a template or consensus model
was computed based on the pooled samples. Subsequently, the cluster size for each sample
were utilized as features for training a SVM. With ASPIRE, we adopted the traditional fully
supervised classification setting as above, training a SVM on both the AML and normal cases
in the training set.

Among these algorithms, JCM achieved the highest AUC value. Also, JCM along with
Citrus achieved the highest F -measure value and ARI for this dataset. It can be observed
from Table 3 that JCM and Citrus produced very similar results for the remaining performance
measures. Indeed, both Citrus and JCM correctly predicted 179 of the 180 test-labels with
Citrus incorrectly predicting an AML patient to be normal, whereas JCM mislabelled a normal
patient to be AML. As ASPIRE did not produce any results (terminated itself with unknown
reasons before completing the fitting procedure), we do not report the results for ASPIRE in
Table 3. However, it is noted in Table 3 in [8] that ASPIRE achieved an overall AUC of 98.9,
although using a different partition into training and test sets.

The remaining two methods, HDPGMM and SWIFT, achieved perfect specificity, but per-
formed poorly in terms of sensitivity. In other words, they have correctly identified all normal
patients, but mislabelled a number of AML patients as being normal. This is also reflected in
their poor F -measure, ARI, and AUC values.

Inter-sample variation within a given class of samples can be studied in various ways. Such
insights can lead to understanding of subtle subclass structures and allow for better classifica-
tion. We provide a visual tool in the form of two-dimensional plots (see Figures 4 and 5) using
Multi-dimensional Scaling based on the symmetrized KL distances between the JCM fitted
multivariate mixture distributions for each pair of samples. For example, for the WNV dataset
(Figure 5A), all samples (with the exception of the outlying sample) as modelled by JCM were
very similar except for the mixing proportions, whereas much larger variation can be observed
between samples in the CFSE dataset (Figure 5B).

4 Modifications for a large number of markers

The largest number p of markers considered simultaneously in the two examples above is seven.
Our experience with the fitting of mixtures of restricted skew t (rMST) distributions to multi-
variate data consisting of p variables has shown that this mixture model is feasible in practice
for p as large as at least 20. It would suggest that the JCM procedure is therefore also feasible
for 20 or so markers, although it does require more fitting time than with just the fitting of
mixtures of rMST distributions since it also has additional random-effects terms in the model
to construct the class template.

One way to reduce the dimensionality when there is a very large number p of markers is to
perform a principal component analysis (PCA) and work with the first q principal components,
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where q is chosen to be appropriately small.
Another way of proceeding in the case of very large p is to use so-called matrix factorization.

Let
X = (y1, . . . , yn)T (12)

be the n × p data matrix. Then X can be expressed via matrix factorization as

X = X1X2, (13)

where X1 is a n× q matrix and X2 is a q× p matrix and where q is chosen to be much smaller
than p. For a specified value of q, the matrices X1 and X2 are chosen to minimize

‖X − X1X2‖
2, (14)

where ‖ · ‖ is the Frobenius norm (the sum of squared elements of the matrix). With this
factorization, dimension reduction is effected by replacing the data matrix X by the solution
X̂1 for the factor matrix X1; the vth column of X̂1 gives the values of the vth metavariable for
the n observations in the sample. Thus the original p variables are replaced by q metavariables.
When the elements of X are non-negative, we can restrict the elements of X1 and X2 to be
non-negative. This approach is called non-negative matrix factorization (NMF) in the literature
([22]; [23]). We shall call the general approach where there are no constraints on X1 and X2,
general matrix factorization (GMF). Nikulin and McLachlan [24] have developed a very fast
approach to the general matrix factorization (14), using a gradient-based algorithm that is
applicable to an arbitrary (differentiable) loss function.

The dimension-reduction procedures PCA, GMF, or NMF can be undertaken either before
or after the deletion from each sample of cells with outlying expression values for some of the
markers. These outliers can be deleted first by implementing JCM in the first instance for one
or more subsets of the markers of manageable dimension. Also, one might wish to use just the
front and side scatter measurements to identify outliers.

In applications of normal or t-mixture models to high-dimensional datasets outside of flow
cytometry such as in the clustering of microarray gene-expression data, mixtures of factor
analyzers (MFA), or mixtures of common factor analysers (MCFA) have been applied; see,
for example, Baek et al. [25]. With this factor-analytic approach, the correlations between
the variables in the component-covariance matrices are explained by the variables depending
linearly on a small number q of unobservable (latent) factors.

5 Discussion

We have considered the JCM procedure for the clustering of cells within a sample and the un-
supervised and supervised classification of multiple samples of cells for multidimensional flow
cytometric datasets. JCM addresses these two problems with a single multi-level framework.
Firstly, JCM can perform cell-population identification and alignment across multiple samples
in a fully automated manner. Secondly, the template approach of JCM provides a mathemati-
cally convenient way to classify new samples. For the former task, the effectiveness of JCM has
been illustrated in [7] on three experiments, giving promising results. The focus of this paper
is on the modelling of inter-sample variations and the latter task of sample classification.

For the problem of supervised classification of a new, unlabelled sample to one of a number
of predefined classes, a template for each class is constructed by JCM. Unlike FLAME, the class
template built by JCM is characterized parametrically. This facilitates the use of divergence
measures such as the KL distance for quantitative comparison of two parametric distributions.

14



The use of the KL distance in classifying samples thus uses a different approach compared to
methods such as HDPGMM, Citrus, and ASPIRE in which the classifier is built based on a
limited number of features two derived from the fitted models. In contrast, JCM is based on the
fitted densities for the class templates and the sample to be classified and not just a few features
of these estimated densities such as the estimated mixing proportions and component/cluster
means or medians of some of the markers.

The JCM procedure was compared to existing benchmark methods on four real FCM
datasets. On the WNV and CFSE datasets where small and large inter-sample variations
were observed, respectively, JCM was able to segment and model the populations identify by
manual analysis with higher precision. In the AML classification challenge, JCM achieved an
almost perfect AUC, the highest among the five methods (Citrus, flowMatch, SWIFT, and
HDPGMM) considered. The JCM procedure was also able to correctly identify all AML sam-
ples, achieving a sensitivity of one, while the sensitivity of none of the other four methods
exceeded 0.95. On the BCR dataset, JCM performed best on the basis of both the F -measure
and AUC.

On the other hand, JCM’s focus on modeling the overarching class structure could make it
less suitable for certain datasets for which the classification is effectively driven by a specific
feature or dimension of the samples rather than their overall high-dimensional form in terms
of the mixture distribution. Comparison of classification results in Table 4 for two particular
FlowCAP-II datasets illustrates this point.
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Figures

Figure 1: Comparison of JCM and manual analysis of samples from the WNV dataset. The four
major populations identified manually (A) have similar locations across the samples, but the
abundance of the CD4+CFSE- population varies greatly between samples. The proportions of
the other three populations remain relatively similar as revealed by a heatmap of the proportions
(B). The template by JCM (C) captures the all four populations with a parametric model.
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Figure 2: Clustering and matching of cell populations across DLBCL samples. The density plot
of the raw data of selected samples are shown in the first column. The automated gating results
of JCM, flowMatch, flowPeaks, SWIFT, and HDPGMM for each of these samples are given in
columns two through five, respectively. As can be observed, with the exception of flowMatch
and flowPeaks, two global clusters were identified by JCM, SWIFT, and HDPGMM.
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Figure 3: 2D scatter plots of markers from panel 4 for a sample from each of the LNP− (A)
and a LNP+ (B) in the BCR dataset.
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Figure 4: Inter-sample variation within (A) the normal and (B) the AML classes can be visual-
ized in two-dimensions using Multi-dimensional Scaling (MDS) based on the symmetric version
of KL distances between the JCM fitted distributions of each pair of samples.

Figure 5: Visualization of inter-sample variation within the WNV and CFSE datasets through
MDS reveals that (A) all but one sample (sample013) in the WNV dataset were quite similar
and (B) the inter-sample variation is more profound in the CFSE dataset.
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Tables

Table 1: Misclassification rate (MCR) of automated gating by various algorithms
against manual analysis on the CFSE dataset

Sample JCM ASPIRE HDPGMM flowMatch flowPeaks SWIFT

001 0.0485 0.1880 0.1477 0.2767 0.1494 0.2459
002 0.1007 0.2026 0.1341 0.2651 0.1717 0.2300
003 0.0350 0.2568 0.2143 0.3391 0.1522 0.2172
004 0.2071 0.2945 0.2698 0.0095 0.2302 0.2121
005 0.0390 0.2806 0.1979 0.2349 0.1575 0.1913
006 0.2874 0.3116 0.2249 0.2122 0.1740 0.1242
007 0.2797 0.2794 0.2252 0.0071 0.2068 0.1656
008 0.0421 0.2535 0.2146 0.2750 0.1738 0.2121
009 0.1132 0.3196 0.2273 0.2792 0.1951 0.2258
010 0.0918 0.2373 0.2124 0.0456 0.1734 0.2338
011 0.0649 0.2344 0.1482 0.3083 0.1317 0.1612
012 0.0742 0.2076 0.1858 0.3141 0.1815 0.2556
013 0.2326 0.0437 0.0272 0.2316 0.1475 0.0935

AMCR 0.1243 0.2392 0.1869 0.2153 0.1727 0.1976

Table 2: Classification results by each algorithm on the BCR dataset
Sensitivity Specificity Accuracy Precision F -measure AUC

JCM 0.86 0.43 0.64 0.60 0.71 0.69
Citrus 0.29 0.71 0.50 0.41 0.36 0.59

HDPGMM 0.14 0.71 0.43 0.24 0.20 0.59
flowMatch 0.00 0.91 0.71 0.00 0.00 0.52
ASPIRE 0.00 1.00 0.50 0.00 0.00 0.50
flowPeaks 0.00 1.00 0.50 0.00 0.00 0.50
SWIFT 0.00 1.00 0.50 0.00 0.00 0.50

Table 3: Classification results by each algorithm on the AML dataset
Sensitivity Specificity Accuracy Precision F -measure ARI AUC

JCM 1.00 0.99 0.99 0.95 0.97 0.97 0.997
Citrus 0.95 1.00 0.99 1.00 0.97 0.97 0.975

flowMatch 0.85 1.00 0.98 1.00 0.92 0.89 0.925
SWIFT 0.65 1.00 0.96 1.00 0.79 0.73 0.825

flowPeaks 0.45 1.00 0.94 0.62 0.62 0.55 0.725
HDPGMM 0.45 1.00 0.94 0.62 0.62 0.55 0.725
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Table 4: Comparative analysis of multiple methods on flowCAP-II datasets

HEU vs UE HVTN
Accuracy Precision F -measure Accuracy Precision F -measure

JCM 0.49 0.49 0.44 0.76 1.00 0.69
flowCore-flowStats 0.55 0.455 0.50 1.00 1.00 1.00
flowType-FeaLect 0.55 0.545 0.55 1.00 1.00 1.00

SWIFT 0.64 0.545 0.60 1.00 1.00 1.00
PBSC 0.273 0.36 0.30 0.95 0.95 0.95

PramSpheres 0.364 0.36 0.36 0.90 0.90 0.90
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