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and
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Abstract : We consider a random number Nn and strictly stationary associated random

variables Xk and form random partial sums SNn =
∑Nn

j=1Xj under the assumption that Nn

is independent of the sequence {Xr, r ≥ 1} for every n ≥ 1. Under certain conditions on

the random variables Xk and Nn, we obtain the limit distribution of the sequence SNn after

suitable normalization. We also obtain an estimate of the order of approximation.

1 Introduction

A set of random variables {X1, X2, . . . , Xk} is said to be associated if for each pair of coor-

dinatewise nondecreasing functions f, g : Rk → R,

Cov(f(X1, X2, . . . , Xk), g(X1, X2, . . . , Xk)) ≥ 0

whenever the covariance exists. A sequence {Xn, n ≥ 1} of random variables is said to be

associated if, for every n ∈ N, the family X1, X2, . . . , Xn is associated.

For examples of sequences of associated random variables and their properties, see Prakasa

Rao and Dewan (2001) and Prakasa Rao (2012). Let the sequence {Xn, n ≥ 1} be a strictly

stationary sequence of square integrable associated random variables. Central limit theorem

(CLT) for the sequence {Xn, n ≥ 1} was proved by Newman (1980) (cf. Bulinski and Shaskin

(2007), Prakasa Rao (2012), Oliveira (2012)).

Let {Xn, n ≥ 1} be a stationary associated sequence of square integrable random vari-

ables. Let EXn = µ, V (X1) = σ2
1, cj = Cov(X1, X1+j), Sn =

∑n
j=1Xj and σ2 = σ2

1 +

2
∑∞

j=1 cj .
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We assume one or more of the following assumptions on the sequence of covariances

{cj , j ≥ 1} in the sequel:

(A1)
∑∞

j=1 cj < ∞;

(A2)
∑∞

j=1 jcj < ∞;

(A3)
∑∞

j=n cj < Cn−θ for all n and some positive constants C and θ independent of n.

Note that each of the conditions (A2) and (A3) implies (A1). Wood (1983) called the

condition (A1) as ”finite susceptibility” condition. We now recall the central limit theorem

of Newman (1980) for a sequence of stationary associated random variables.

Theorem 1.1: Let a stationary sequence of square integrable associated random variables

{Xn, n ≥ 1} satisfy the condition (A1) and σ2 > 0. Then

Sn − nµ

σ
√
n

D→ Z1 ∼ N(0, 1) as n → ∞

where N(0, 1) denotes the standard normal distribution.

The following theorem is a consequence of the result in Wood (1983).

Theorem 1.2: (Corollary 4.14, Oliveira (2012)) Let a stationary sequence of square in-

tegrable associated random variables {Xn, n ≥ 1} satisfy the condition (A3) and σ2 > 0.

Further suppose that E|X1|3 < ∞. Then there exists a positive constant C such that

sup
x∈R

∣∣P (Sn − nµ ≤
√
nσx)− Φ(x)

∣∣ < Cn− 1
5(1. 1)

where Φ(x) denotes the distribution function of the standard normal random variable.

Barbour and Xia (2006) discussed normal approximation for random sums. Gnedenko

and Korolev (1996) investigated random summation and limit theorems for random sums.

Improved Berry-Esseen type bounds for partial sums of sequences of associated random vari-

ables were derived in Birkel (1988), Bulinski (1995) and Dewan and Prakasa Rao (1997, 2005)

under alternate sets of conditions. Central limit theorems for random sums of independent

random variables and order of approximations are investigated for some dependent sequences

such as martingales, mixing sequences and m-dependent random sequences (cf. Islak (2013),

Landers and Rogge (1976, 1988), Prakasa Rao (1969, 1974, 1975), Shang (2012), Sreehari

(1968, 1975), Sunklodas (2014), Tomko (1967)). Prakasa Rao and Sreehari (1982, 2015)
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obtained the order of approximation in the random central limit theorem for m-dependent

random variables. Applications of these limit theorems is essential in the study of statistical

inference problems by methods of sequential analysis where the sample size at the termina-

tion of sampling is random. As far as we are aware, there are no results on central limit

theorems for random sums of associated random variables. We prove such a result now for

the first time and also obtain an estimate on the order of approximation. We prove some

lemmas in Section 2 and the random central limit theorem for associated sequences of random

variables is proved in Section 3. An estimate of the remainder term in the random central

limit theorem is obtained in Section 4.

2 Assumptions and Lemmas

Consider a sequence {Xn} of strictly stationary square integrable random variables with

covariances cj ≥ 0 satisfying the assumption (A1).

Note that

V (Sn) = nσ2
1 + 2n

n−1∑
j=1

cj − 2
n−1∑
j=1

jcj(2. 1)

and, by the Kronecker lemma, the condition (A1) implies that

V (Sn)

n
→ σ2 < ∞(2. 2)

as n → ∞.

Let the sequence {Nn} be a sequence of nonnegative integer valued random variables such

that, for each n, the random variable Nn is independent of the random variables {Xr, r ≥ 1}
and is such that Nn, properly normalized, converges in distribution to a random variable Z2.

We assume that the random variables Nn are such that

(A4)
ENn

n
→ ν > 0,

V (Nn)

n
→ τ2 < ∞

as n → ∞, νσ2 + µ2τ2 > 0 and that, for large n,

sup
x∈R

∣∣∣∣P (Nn −ENn ≤ x
√
V (Nn)) − G(x)

∣∣∣∣ < ϵn(2. 3)

where G is a continuous distribution function satisfying the condition that there exists a

positive constant C such that

sup
x∈R

|G(x+ y)−G(x)| < Cy, y > 0(2. 4)
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and the sequence ϵn → 0 as n → ∞.

In view of the inequality in (2.3) and the assumptions (A4), it follows that

Nn − E(Nn)

V (Nn)
P→ 0 as n → ∞.(2. 5)

We now compute V (SNn).

Lemma 2.1: Let P (Nn = k) = pn,k. Then, under the condition (A1),

V (SNn) = E(Nn) σ
2 + V (Nn) µ

2 − 2
∞∑
j=1

jcjP (Nn > j)− 2
∞∑
j=1

cj

 j∑
k=0

kpn,k

 .(2. 6)

Proof : Proceeding as in the proof of Lemma 2.1 in Prakasa Rao and Sreehari (2015), we

have

V (SNn) = ENnσ
2
1 + V (Nn)µ

2(2. 7)

+2
∞∑
k=0

pn,k
k

∞∑
j=1

cjI(j < k)−
∞∑
j=1

jcjI(j < k)


 .

Now
∞∑
k=0

pn,kk(
∞∑
j=1

cjI(j < k)) =
∞∑
j=1

cj(
∞∑

k=j+1

kpn,k) =
∞∑
j=1

cj [ENn −
j∑

k=0

kpn,k].(2. 8)

Furthermore ∞∑
k=0

pn,k(
∞∑
j=1

jcjI(j < k)) =
∞∑
j=1

jcjP (Nn > j).(2. 9)

From (2.7) - (2.9) above, we get (2.6).

Remarks: Observe that, if the assumption (A2) holds, then

∞∑
j=1

jcjP (Nn > j) ≤
∞∑
j=1

jcj < ∞

and
∞∑
j=1

cj(
j∑

k=0

kpn,k) ≤
∞∑
j=1

jcj(
j∑

k=0

pn,k) ≤
∞∑
j=1

jcj < ∞,

so that, by the assumptions concerning ENn and V (Nn), it follows that

V (SNn)

n
→ νσ2 + µ2τ2(2. 10)
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as n → ∞. In the next section, we will prove that

SNn − E(SNn)√
V (SNn)

D→ Z∗(2. 11)

as n → ∞ where Z∗ is a linear function of independent random variables Z1 and Z2 and

obtain the rate of convergence in the limit theorem stated above in Section 4. It will be noted

that, if Z2 is also a standard normal random variable, then Z∗ is also standard normal.

We now state a lemma which is of independent interest.

Lemma 2.2: Let Un and U be random variables with the distribution function of U Lip-

schtzian with constant α > 0 and V be a random variable independent of Un and U with

E|V | < ∞. Let g : R → R. Then, for any constant c and positive δ and for all z ∈ R,

|P (Un + V g(Un) ≤ z)− P (U + cV ≤ z)|(2. 12)

≤ sup
x∈R

|P (Un ≤ x)− P (U ≤ x)|+ P (|g(Un)− c| > δ) + αδ E|V |

and

|P (Un + V g(Un) ≤ z)− P (Un + cV ≤ z)|(2. 13)

≤ 2 sup
x∈R

|P (Un ≤ x)− P (U ≤ x)|+ P (|g(Un)− c| > δ) + 2αδ E|V |.

Remarks: The first inequality (2.12) given above is Lemma 2.3 in Prakasa Rao and Sreehari

(2015). The proof of the second inequality is similar to that of the first inequality.

3 Random Central Limit Theorem (RCLT)

Before we state and prove the main result of this section, we need to introduce some notation.

Let

dK(U, V ) = sup
x∈R

|P (U ≤ x)− P (V ≤ x)|

be the Kolmogorov distance between the distribution functions of U and V. Define

Tn =
SNn − E(SNn)√

V (SNn)
=

SNn − µNn√
V (SNn)

+
(Nn − ENn)µ√

V (SNn)
,
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and

Tn(Z1) =

√
Nn

V (SNn)
σZ1 +

(Nn −ENn)µ√
V (SNn)

where Z1 is a standard normal random variable and is independent of the sequence {Nn}.
Furthermore, define

T ′
n(Z1) =

√
ν

νσ2 + µ2τ2
σZ1 +

(Nn − ENn)µ√
V (SNn)

and

T (Z1, Z2) =
µτ√

νσ2 + µ2τ2

[
σ
√
ν

µτ
Z1 + Z2

]
where Z2 follows the distribution function G given at (2.3) and is independent of Z1. We

will prove that the random variable T (Z1, Z2) is the limit random variable Z∗ in (2.11).

In the following discussion, the letter C with or without subscript will denote a positive

constant.

Theorem 3.1: Let the sequence {Xn} be a stationary associated sequence of square integrable

random variables satisfying the condition (A2). Let the sequence {Nn} be a sequence of

nonnegative integer valued random variables such that, for each n, the random variable Nn

is independent of the sequence {Xk} satisfying the assumption (A4). Then

dK(Tn, T (Z1, Z2)) → 0 as n → ∞

where the random variables Z1 and Z2 are as defined earlier.

Proof : Set Dn = {|Nn − nν| ≤ nν/2} . Then

sup
x∈R

|P (Tn ≤ x)− P (Tn(Z1) ≤ x)|(3. 1)

≤
∑

nν/2≤k≤3nν/2

pn,k sup
x∈R

∣∣∣∣P (Sk − µk

σ
√
k

≤ x(n, k)

)
− P (Z1 ≤ x(n, k))

∣∣∣∣+ P (D′
n)

where

x(n, k) =
x
√
V (SNn)− µ(k − ENn)

σ
√
k

and D′
n denotes the complement of the set Dn. By the Chebyshev’s inequality and the

assumptions on ENn and V (Nn), it follows that P (D′
n) → 0. By Theorem 1.1, it follows that

|P (Sn − nµ ≤ xσ
√
n)− Φ(x)| → 0
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as n → ∞ for any x ∈ R and the convergence is uniform in x ∈ R as the limiting distribution

function Φ(.) is continuous. Hence, given ϵ > 0, for n and hence k large,

|P (Sk − kµ ≤ σ
√
k x(n, k))− P (Z1 ≤ x(n, k))| ≤ ϵ.

Hence

dK(Tn, Tn(Z1)) → 0

as n → ∞. Observe that, as n → ∞,

Nn

V (SNn)
P→ ν

νσ2 + µ2τ2
.(3. 2)

Furthermore, since
V (Nn)

V (SNn)
→ τ2

νσ2 + µ2τ2

as n → ∞, it follows that

(Nn − ENn)µ√
V (SNn)

D→ µτ√
νσ2 + µ2τ2

Z2(3. 3)

as n → ∞. Applying the second inequality in Lemma 2.2 with

Un =
µ(Nn − ENn)√

V (SNn)
, V = Z1, g(Un) = σ

√
Nn

V (SNn)
, c = σ

√
ν

νσ2 + µ2τ2

and

U = τµZ2

√
1

νσ2 + µ2τ2
,

we conclude that

dK(Tn(Z1), T
′
n(Z1)) → 0

as n → ∞ by using the limits in (3.2) and (3.3). Finally, observe that

dK(T ′
n(Z1), T (Z1, Z2))(3. 4)

=

∫
sup
x∈R

∣∣P (T ′
n(u) ≤ x)− P (T (u,Z2) ≤ x)

∣∣ dΦ(u)
=

∫
sup
x∈R

∣∣∣∣∣P
(
Nn − ENn√

V (SNn)
µ ≤ y(x, u)

)
− P

(
µτZ2√

νσ2 + µ2τ2
≤ y(x, u)

)∣∣∣∣∣ dΦ(u)

where

y(x, u) = x− uσ

√
ν

νσ2 + µ2τ2
.(3. 5)
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Now, in view of (2.3), it follows that

dK(T ′
n(Z1), T (Z1, Z2)) → 0

as n → ∞. The proof of Theorem 3.1 is now complete with the application of the triangle

inequality

dK(Tn, T (Z1, Z2)) ≤ dK(Tn, Tn(Z1)) + dK(Tn(Z1), T
′
n(Z1)) + dK(T ′

n(Z1), T (Z1, Z2)).

Remarks : (i) If the distribution function G = Φ, then the random variable T (Z1, Z2) =

Z∗ ∼ N(0, 1).

(ii) If {Nn} is the sum of n independent random variables Y1, . . . , Yn with the same mean

ν and variance σ2 < ∞, then G = Φ and the limit distribution of
SNn−E(SNn )√

V (SNn )
is N(0, 1).

4 Order of approximation

We shall now obtain an estimate of the order of approximation in the random central limit

theorem with some additional assumptions on the random variables {Xn} and the random

indices {Nn}.

Theorem 4.1: Let the sequence {Xn} be a strictly stationary associated sequence of square

integrable random variables satisfying the conditions (A2) and (A3). Suppose that E|X1|3 <
∞. Let the sequence {Nn} be a sequence of nonnegative integer valued random variables such

that, for each n, the random variable Nn is independent of the sequence {Xk, k ≥ 1} satisfying

the assumption (A4). Let 0 < θ < 1
2 and δn = n−θ be a sequence of positive numbers. Then

there exists positive constants C1 and C2 such that, for all n large,

dK(Tn, T (Z1, Z2)) ≤ C1n
−min(θ,1−2θ, 1

5
) + C2ϵn.(4. 1)

Proof : We now estimate the terms dK(Tn, Tn(Z1)), dK(Tn(Z1), T
′
n(Z1)) and dk(T

′
n(Z1), T (Z1, Z2))

separately and then use the triangle inequality to obtain the result. We obtain an upper

bound on the term dK(Tn, Tn(Z1)). Then, by the Chebyshev inequality and the bound given

in Theorem 1.2, for large n, we get that
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(4. 2)

dK(Tn, Tn(Z1)) ≤
∑

nν/2≤k≤3nν/2

pn,k sup
x∈R

∣∣∣∣P (Sk − µk

σ
√
k

≤ x(n, k)

)
− P (Z1 ≤ x(n, k))

∣∣∣∣
+P (D′

n)

≤ 4V (Nn)

(ENn)2
+

∑
nν/2≤k≤3nν/2

pn,kCn− 1
5 .

≤ C3

n
+

C4

n
1
5

≤ C5

n
1
5

.

Next, we consider estimation of the term dK(Tn(Z1), T
′
n(Z1)). By the second inequality in

Lemma 2.2 with Un, g(Un) and c as in Theorem 3.1, we get that

(4. 3)

dK(Tn(Z1), T
′
n(Z1)) = sup

x∈R

∣∣P (Tn(Z1) ≤ x)− P (T ′
n(Z1) ≤ x)

∣∣
= sup

x∈R
|P (Un + Z1 g(Un) ≤ x)− P (Un + c g(Un) ≤ x)|

≤ αδnE|Z1|+ 2 sup
u∈R

∣∣∣∣∣P
(
(Nn − ENn)µ√

V (SNn)
≤ u

)
− P

(
Z2µτ√

νσ2 + µ2τ2
≤ u

)∣∣∣∣∣
+P

(∣∣∣∣∣
√

Nn

V (SNn)
−
√

ν

νσ2 + µ2τ2

∣∣∣∣∣ > δn

)

≤ C5δn + C6ϵn + P

(∣∣∣∣∣
√

Nn

V (SNn)
−
√

ν

νσ2 + µ2τ2

∣∣∣∣∣ > δn

)
.

Let us now estimate the term

P (|
√

Nn

V (SNn)
−
√

ν

νσ2 + µ2τ2
| > δn) .

Let

γ =
ν

νσ2 + µ2τ2
.

Observe that, for n large, using the assumption (A4) and (2.10), we get that

(4. 4)

P (|
√

Nn

V (SNn)
−
√

ν

νσ2 + µ2τ2
| > δn)

= P (|
√

Nn

V (SNn)
−√

γ| > δn)
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= P (| Nn

V (SNn)
− γ| > δn(|

√
Nn

V (SNn)
+

√
γ|))

≤ P (| Nn

V (SNn)
− γ| > δn

√
γ)

≤ P (|Nn − γ V (SNn)| > δn V (SNn)
√
γ)

≤ E(Nn − γ V (SNn))
2

γδ2nV
2(SNn)

=
V (Nn) + [E(Nn)− γ V (SNn)]

2

γδ2nV
2(SNn)

= O(
nτ2 + [nν − γn(νσ2 + µ2τ2)]2

γδ2n[n
2(νσ2 + µ2τ2)2]

)

= O(
1

nδ2n
) = O(n2θ−1)

in view of the assumption (A4) on the sequence of random variables {Nn, n ≥ 1}, and the

results that the sequences ENn
V (SNn )

and V (Nn)
V (SNn )

converge to finite limits as n → ∞. Finally, we

estimate the term dK(T ′
n(Z1), T (Z1, Z2)). From (3.4), observe that

(4. 5)

dK(T ′
n(Z1), T (Z1, Z2))

=

∫
sup
x∈R

∣∣∣∣∣P
(
(Nn −ENn)µ√

V (SNn)
≤ y(x, u)

)
− P

(
Z2µτ√

νσ2 + µ2τ2
≤ y(x, u)

)∣∣∣∣∣ dΦ(u)
≤ ϵn.

Combining the estimates derived in (4.2)-(4.5), we get the result given in (4.1) proving The-

orem 4.1.

Remarks:(i) The order of approximation depends on the rate of convergence in the central

limit theorem for associated random variables as well as the rate of convergence in the weak

limit theorem concerning the distribution of the random index Nn and the rate of conver-

gence in probability of the sequence
√

Nn
n to its limit. If 0 < θ ≤ 1

5 , then the bound in (4.1)

will be C1n
−θ + C2ϵn; if

1
5 < θ ≤ 2

5 , then the bound in (4.1) will be C1n
−1/5 + C2ϵn and if

2
5 < θ < 1

2 , then the bound in (4.1) will be C1n
2θ−1 + C2ϵn.

(ii) Let the sequence {Yn, n ≥ 1} be a sequence of i.i.d. non-negative integer-valued random

variables with EY1 = ν and V (Y1) = τ2 < ∞ and independent of the random variables
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{Xk, k ≥ 1}. Let Nn =
∑n

j=1 Yj . Then G = Φ and ϵn = C1n
−1/2. Choose θ = 1/3, that is

δn = n−1/3. Then Z∗ ∼ N(0, 1) and the upper bound in the order of approximation in the

random central limit theorem is also Cn−1/5.

(iii) Proofs of Theorems 3.1 and 4.1 are similar to the proofs of the corresponding results

for m-dependent random variables in Prakasa Rao and Sreehari (2015). However there is an

important difference. While obtaining bounds on dK(Tn(Z1), T (Z1, Z2)) we used a bound on

dK(T ′
n(Z1), T (Z1, Z2)) in Prakasa Rao and Sreehari (2015) as it was not possible to directly

obtain a bound on dK(Tn(Z1), T
′
n(Z1)). However, in the present case, we are able to obtain

a bound on dK(Tn(Z1), T
′
n(Z1)) directly.
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