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1 Introduction

Suppose X = {Xt, 0 ≤ t ≤ T} and Y = {Yt, 0 ≤ t ≤ T} are real-valued stochastic pro-

cesses, representing the signal and the observation respectively, governed by the following

homogeneous linear system of stochastic differential equations

dXt = θXtdt+ ϵ dV H
t , 0 ≤ t ≤ T,X0 = x0 ̸= 0,(1. 1)

dYt = θXtdt+ ϵ dWH
t , 0 ≤ t ≤ T, Y0 = 0.

Here the processes V H = {V H
t , 0 ≤ t ≤ T} and WH = {WH

t , 0 ≤ t ≤ T} are assumed to

be independent standard fractional Brownian motions (fBm’s) with the same known Hurst

index H ∈ [12 , 1) and θ ∈ Θ open in R. Suppose the component Y = {Yt, 0 ≤ t ≤ T} is

observed and the problem is to estimate the unknown parameter θ based on the observation

Y = {Yt, 0 ≤ t ≤ T} and study its asymptotic properties as ϵ → 0. The system (1.1) has a

unique solution (X,Y ) which is a Gaussian process . Suppose that we observe the process Y

alone but would like to have information about the processX at time t. This problem is known

as filtering the signal X at time t from the observation of Y up to time t. The solution to this
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problem is the conditional expectation of Xt given the σ-algebra generated by the process

{Ys, 0 ≤ s ≤ t}. Since the processes (X,Y ) is jointly Gaussian, the conditional expectation

of Xt given {Ys, 0 ≤ s ≤ t} is linear in {Ys, 0 ≤ s ≤ t}. It is also the optimal filter in the sense

of minimizing the mean square error. The problem of finding the optimal filter reduces to

finding the conditional mean πt(X) = Eθ(Xt|Ys, 0 ≤ s ≤ t). This problem leads to Kalman-

Bucy filter if H = 1
2 . Le Breton (1998) and Kleptsyna and Le Breton (2002b) and Kleptsyna

et al. (2000a,b) studied this problem of filtering forH ∈ (12 , 1). ForH = 1/2, this problem has

been solved by Kutoyants (1994). For optimal filtering for fractional stochastic systems, see

Kleptsyna , Kloden and Ahn (1998). Asymptotic properties of maximum likelihood estimator

of the drift parameter for partially observed fractional diffusion systems are investigated in

Brouste and Kleptsyna (2010). Kallianpur and Selukar (1991,1993) have studied parameter

estimation and local asymptotic normality in linear filtering for linear systems driven by

Brownian motions. They have also obtained a large deviation inequality for the maximum

likelihood estimator (MLE) of the parameter.

We obtain the asymptotic properties of the maximum likelihood estimator (MLE) of the

parameter θ by studying the asymptotic properties of the log-likelihood ratio process with

index as ϵ→ 0. We follow the techniques used by Prakasa Rao (1968), Ibragimov and Khas-

minskii (1981) and others. We prove the weak convergence of the appropriately normalized

log-likelihood ratio random process and appeal to the continuous mapping theorem to study

the asymptotic behaviour of the MLE of the parameter θ as ϵ→ 0.

We now state the main result of this paper. Let θ denote the true parameter. Let θ̂ϵ

denote the maximum likelihood estimator of θ based on the observation of the process Y

over the interval [0, T ] satisfying the stochastic differential system defined by (1.1). Then, as

ϵ→ 0, the normalized random vector

ϵ−1(θ̂ϵ − θ)

converges to the Gaussian distribution with mean zero and variance [σ2]−1 where σ2 will be

specified later.

2 Preliminaries

We now introduce some notation and some basic results. Let (Ω,F , (Ft), P ) be a stochastic

basis satisfying the usual conditions and the processes discussed in the following are (Ft)-
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adapted. Further the natural filtration of a process is understood as the P -completion of the

filtration generated by this process. Let WH = {WH
t , t ≥ 0} be a standard fractional Brow-

nian motion with Hurst parameter H ∈ (0, 1), that is, a Gaussian process with continuous

sample paths such that WH
0 = 0, E(WH

t ) = 0 and

E(WH
s W

H
t ) =

1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process J = {Jt, t ≥ 0} governed by the stochastic integral

equation

Jt =

∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a non-vanishing non-random

function. For convenience, we write the above integral equation in the form of a stochastic

differential equation

dJt = C(t)dt+B(t)dWH
t , t ≥ 0; J0 = 0(2. 3)

driven by the fractional Brownian motion WH . Even though the process J is not a semi-

martingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which is called a fundamental

semimartingale such that the natural filtration (Zt) of the process Z coincides with the nat-

ural filtration (Jt) of the process J (Kleptsyna et al. (2000a)). Define, for 0 < s < t,

kH = 2H Γ (
3

2
−H)Γ(H +

1

2
),(2. 4)

κH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 5)

λH =
2H Γ(3− 2H)Γ(H + 1

2)

Γ(32 −H)
,(2. 6)

wH
t = λ−1

H t2−2H ,(2. 7)

and

MH
t =

∫ t

0
κH(t, s)dWH

s , t ≥ 0.(2. 8)

The processMH is a Gaussian martingale, called the fundamental martingale and its quadratic

variation < MH
t >= wH

t . Further more the natural filtration of the martingaleMH coincides

with the natural filtration of the fBm WH .

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth so that

QH(t) =
d

dwH
t

∫ t

0
κH(t, s)

C(s)

B(s)
ds, t ∈ [0, T ](2. 9)
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is well-defined where the functions wH and kH(t, s) are as defined in (2.7) and (2.5) respec-

tively and the derivative is understood in the sense of absolute continuity. The following

theorem due to Kleptsyna et al. (2000a) associates a fundamental semimartingale Z associ-

ated with the process J such that the natural filtration (Zt) of Z coincides with the natural

filtration (Jt) of J.

Theorem 2.1: Suppose the sample paths of the process QH belong to L2([0, T ], dwH) a.s.

Let the process Z = (Zt, t ∈ [0, T ]) be defined by

Zt =

∫ t

0
κH(t, s)B−1(s)dJs.(2. 10)

Then the following results hold:

(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =

∫ t

0
QH(s)dwH

s +MH
t(2. 11)

where MH is the fundamental martingale defined above.

(ii) the natural filtrations (Zt) and (Jt) coincide.

For more details on properties of fractional diffusion processes, see Prakasa Rao (2010).

3 Observation Semimartingale

Consider the linear system defined by the equation (1.1). Let

Zt =
1

ϵ

∫ t

0
κH(t, s)dYs, 0 ≤ t ≤ T

where the function κH(t, s) is as specified by equation (2.5). Let

Q(t) =
θ

ϵ

d

dwH
t

∫ t

0
κH(t, s)X(s)ds, 0 ≤ t ≤ T

where the derivative is understood in the sense of absolute continuity with respect to the

measure generated by the function wH . An application of Theorem 2.1 shows that Z is an

(Ft)-semimartingale with the decomposition

Zt =

∫ t

0
Q(s)dwH

s +MH
t , 0 ≤ t ≤ T
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where

MH
t =

∫ t

0
kH(t, s)dWH

s , 0 ≤ t ≤ T

and MH = {MH
t , 0 ≤ t ≤ T} is a Gaussian martigale with quadratic variation wH defined

by (2.7). Furthermore the natural filtration (Zt) of the process Z and the natural filtration

(Yt) of the observation process Y coincide. The process Z is called observation fundamental

semimartingale (cf. Kleptsyna and Le Breton (2002b)).

4 Innovation Type Process

Suppose that {ηt, 0 ≤ t ≤ T} is a random process adapted to the filtration (Ft) such that

Eθ|ηt| <∞ on the underlying probability space (Ω,F , P ). Let πt(θ, η) denote the conditional
expectation of ηt given {Ys, 0 ≤ s ≤ t} or equivalently given {Zs, 0 ≤ s ≤ t} when θ is the

true parameter. Let (Yt) denote the filtration generated by the process Y or equivalently

that of Z. Let

νt = Zt −
∫ t

0
πs(θ,Q)dwH

s , 0 ≤ t ≤ T(4. 1)

where πt(θ,Q) = Eθ(Q(t)|Zs, 0 ≤ s ≤ t). The process ν = {νt, 0 ≤ t ≤ T} is called the

innovation type process. Kleptsyna et al. (2000a) proved that the process ν is a continuous

Gaussian (Yt)-martingale with the quadratic variation wH . Furthermore, if N = {Nt, 0 ≤ t ≤
T} is a square integrable (Yt)-martingale, N0 = 0, then there exists a (Yt)-adapted process

α = {αt, 0 ≤ t ≤ T} such that

E(

∫ T

0
α2
t dw

H
s ) <∞

and P -a.s

Nt =

∫ t

0
αsdνs, 0 ≤ t ≤ T.

5 Main Results

Consider the linear system described by (1.1). Suppose θ ∈ Θ open. Let

Q(t) =
d

dwH
t

∫ t

0
κH(t, s)

θX(s)

ϵ
ds, t ∈ [0, T ],

Zt =
1

ϵ

∫ t

0
κH(t, s)dYs, 0 ≤ t ≤ T,
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and

νt = Zt −
∫ t

0
πs(θ,Q)dwH

s , 0 ≤ t ≤ T.

The filtrations (Zt) of the process Z and (Yt) of the observation process Y coincide and hence

the problems of estimation of the parameter θ based the observations {Ys, 0 ≤ s ≤ t} and

{Zs, 0 ≤ s ≤ t} are equivalent. Define

KH(t.s) = H(2H − 1)

∫ t

s
rH− 1

2 (r − s)H− 3
2dr,(5. 1)

p(t, s) =
θ

ϵ

d

dwH
t

∫ t

s
κH(t, r)dr,(5. 2)

and

q(t, s) =
θ

ϵ

d

dwH
t

∫ t

s
κH(t, r)KH(r, s)dr.(5. 3)

Applying Lemma 3 of Kleptsyna et al. (2000b), we get the following representations for the

processes X and Q involved in the filtering problem for the system governed by the equation

(1.1):

Xt = x0 + θ

∫ t

0
Xsds+ ϵ

∫ t

0
KH(t, s)dNH

s , 0 ≤ t ≤ T

Qt = p(t, 0)x0 + θ

∫ t

0
p(t, s)Xsds+ ϵ

∫ t

0
q(t, s)dNH

s , 0 ≤ t ≤ T

where NH is the fundamental martingale associated with the fBm V H . An application of

Theorem 4 of Kleptsyna et al. (2000b) to the process Q proves that

πt(θ,Q) = p(t, 0)x0 + θ

∫ t

0
p(t, s)πs(θ,X)ds+ ϵ

∫ t

0
c2(θ, t, s)dνs, 0 ≤ t ≤ T

where c2(ϵ, θ, t, s) is a non-random function and {νt, 0 ≤ t ≤ T} is the innovation process. A

similar application of Theorem 4 in Kleptsyna et al. (2000b) to the process X leads to the

equation

πt(θ,X) = x0 + θ

∫ t

0
πs(θ,X)ds+ ϵ

∫ t

0
c1(θ, t, s)dνs, 0 ≤ t ≤ T.

for some non-random function c1(θ, t, s).

Let

Q̄t(θ) = p(t, 0)x0 + θ

∫ t

0
p(t, s)xsds

and

xt(θ) = x0 + θ

∫ t

0
xsds.
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with x0 as specified by (1.1). Applying the equations obtained above following Theorem 4

in Kleptsyna et al. (2000b), it follows that there exist non-random functions ci(θ, t, s), 0 ≤
s ≤ T, i = 1, 2 such that

πt(θ,X)− xt(θ) = θ

∫ t

0
(πs(θ,X)− xs)ds+ ϵ

∫ t

0
c1(θ, t, s)dνs, 0 ≤ t ≤ T(5. 4)

and

πt(θ,Q)− Q̄t(θ) = θ

∫ t

0
p(t, s)(πs(θ,X)− xs)ds+ ϵ

∫ t

0
c2(θ, t, s)dνs, 0 ≤ t ≤ T.(5. 5)

Fix θ ∈ Θ ∈ R. Suppose the set Θ is open. Let

∆t = πt(θ + ϵu,Q)− πt(θ,Q).

and

∆̄t = Q̄t(θ + ϵu)− Q̄t(θ).

Let

δt = πt(θ + ϵu1, Q)− πt(θ + ϵu2, Q)

for u1, u2 ∈ R. For convenience, we denote θ + ϵu1 = β1 and θ + ϵu2 = β2. From the fact

that the processes involved are Gaussian, it follows that there exists a neighbourhood Nθ of

θ and ϵ0 > 0 such that

sup
θ,θ+ϵu1,θ+ϵu2∈Θ,0<ϵ<ϵ0

sup
0≤t≤T

Eβ1(δ
8
t ) <∞.

Let

σ2 =

∫ T

0
[ζt(θ)]

2dwH
t .(5. 6)

and

L0(u) = uξ − 1

2
u2σ2, u ∈ R(5. 7)

where ξ is a Gaussian random variable with mean zero and variance σ2 and the function

ζt(θ) is as specified in Theorem 5.1 given below.

We now state the main result of this paper.

Theorem 5.1: Let θ denote the true parameter. Let θ̂ϵ denote the maximum likelihood

estimator of θ based on the observation of the process Y over the interval [0, T ] satisfying the
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stochastic differential system defined by (1.1). Suppose there exists a non-random function

ζt(θ) such that

(C) sup
0≤t≤T

Eθ|πt(θ + ϵu,Q)− πt(θ,Q)− ϵu ζt(θ)|2 = o(ϵ2)

holds. Then, as ϵ→ 0, the normalized random vector

ϵ−1(θ̂ϵ − θ)

converges to the Gaussian distribution with mean zero and variance [σ2]−1.

Local asymptotic normality: Let Pθ be the probability measure generated by the process

Y on the space C[−g, g] associated with the uniform topology when θ is the true parameter.

Here C[−g.g] is the space of continuous real-valued functions on the interval [−g, g] where
g > 0. Consider the log-likelihood ratio process

Lϵ(u) = log
dPθ+ϵu

dPθ

for fixed u such that θ, θ + ϵu ∈ Θ.

Let K denote a compact subset of Θ such that θ ∈ K and θ+ ϵu ∈ K. Let CK denote the

space of continuous functions defined on the compact set K. Let Kθ = {u : θ ∈ K and θ +

ϵu ∈ K}.

Theorem 5.2: Suppose the condition (C) holds. Then the family of probability measures,

generated by the log-likelihood ratio random process {Lϵ(u), u ∈ Kθ} on CKθ
associated with

the uniform norm topology is locally asymptotically normal and converge weakly to the prob-

ability measure generated by the random process {L0(u), u ∈ Kθ} on CKθ
as ϵ→ 0.

From the general theory of weak convergence of probability measures on the space CKθ

associated with the uniform norm topology (cf. Billingsley (1968), Parthasarathy (1967),

Prakasa Rao (1975)), in order to prove Theorem 5.1, it is sufficient to prove that the finite

dimensional distributions of the random field {Lϵ(u), u ∈ Kθ} converge to the correspond-

ing finite dimensional distributions of the random field {L0(u), u ∈ Kθ} and the family of

probability measures generated by the random fields {Lϵ(u), u ∈ Kθ} for different ϵ is tight.

6 Proofs of Theorems 5.1 and 5.2:

Before we give proofs of Theorem 5.1 and Theorem 5.2, we prove some related lemmas.
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Lemma 6.0:Let θ ∈ Θ. There exists a neighbourhood Nθ = {θ′ : |θ′− θ| < ϵu} of θ contained

in Θ and a constant Ct > 0 depending on θ such that

(i) sup
θ′∈Nθ

sup
0≤s≤t

Eθ|πs(θ′, X)− xs(θ
′)|2 ≤ Ctϵ

2t2−2H

and

(ii) sup
θ′∈Nθ

sup
0≤s≤t

Eθ|πs(θ′, Q)− Q̄s(θ
′)|2 ≤ Ctt

3−2H .

Proof : Following the equations (5.4) and (5.5), an application of the Grownwall’s inequality

(cf. Kutoyants, (1994), Lemma 1.13) shows that

sup
θ′∈Nθ

sup
0≤s≤t

|πs(θ′, X)− xs(θ
′)| ≤ cϵ sup

0≤s≤t
|νs|

and hence

sup
θ′∈Nθ

sup
0≤s≤t

Eθ[|πs(θ′, X)− xs(θ
′)|2] ≤ cϵ2wH

t

≤ cϵ2t2−2H .

Note that

sup
0≤s≤t

Eθ[|πs(θ′, Q)− Q̄s(θ
′)|2] ≤ sup

0≤s≤t
2[θ′]2

∫ t

0
[p(t, s)]2Eθ|πs(θ′, X)− xs(θ

′)|2ds

+2ϵ2 sup
0≤s≤t

Eθ[(

∫ t

0
[c2(θ, t, s)]dνs)

2]

≤ c0(t)(

∫ t

0
[p(t, s)]2ds) sup

0≤s≤t
Eθ[|πs(θ′, X)− xs(θ

′)|2]

+c1(t)ϵ
2Eθ(ν

2
t )

≤ c2(t)t
3−2H + c3(t)ϵ

2t2−2H

≤ c(t)t3−2H .

Hence

sup
θ′∈Nθ

sup
0≤s≤t

Eθ[|πs(θ′, Q)− Q̄s(θ
′)|2] ≤ Ctt

3−2H

where Ct is a constant depending on t, θ and H.
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Lemma 6.1: Suppose the condition (C) holds. Then the finite dimensional distributions

of the random process {Lϵ(u), u ∈ Kθ} converge to the corresponding finite dimensional

distributions of the random process {L0(u), u ∈ Kθ} as ϵ→ 0.

Proof: We will first investigate the convergence of the one-dimensional marginal distributions

of the random process Lϵ(u) as ϵ→ 0. The convergence of other classes of finite-dimensional

distributions follows from the Cramer-Wold device. From the equation (26) in Kleptsyna et

al. (2000b), it follows that

Lϵ(u) =
1

ϵ

∫ T

0
∆tdνt −

1

2ϵ2

∫ T

0
∆2

tdw
H
t

=
1

ϵ

∫ T

0
(∆t − ϵuζt)dνt +

1

ϵ

∫ T

0
ϵuζtdνt

− 1

2ϵ2

∫ T

0
∆2

tdw
H
t

= I1 + I2 + I3 (say)

where ∆t = πt(θ+ ϵu,Q)−πt(θ,Q). Note that the process {ν(t), 0 ≤ t ≤ T} is the innovation

process which a continuous Gaussian martingale with quadratic variation wH . Observe that

E(I21 ) =
1

ϵ2

∫ T

0
Eθ[∆t − ϵuζt]

2dwH
t = o(1)(6. 1)

as ϵ→ 0 by the condition (C) and hence I1 = op(1). Note that

I2 =

∫ T

0
uζtdνt

is a Gaussian random variable with mean zero and variance
∫ T
0 u2Eθ[ζ

2
t ]dw

H
t . Furthermore

I3 = − 1

2ϵ2

∫ T

0
∆2

tdw
H
t

= − 1

2ϵ2

∫ T

0
(∆t − ϵuζt + ϵuζt)

2dwH
t

= − 1

2ϵ2

∫ T

0
[(∆t − ϵuζt)

2 + (ϵuζt)
2 + 2(∆t − ϵuζt)ϵuζt]dw

H
t

= − 1

2ϵ2

∫ T

0
(ϵuζt)

2dwH
t + op(1).

As a consequence of the above computations, we observe that, as ϵ→ 0,

1

ϵ2

∫ T

0
∆2

tdw
H
t =

1

ϵ2

∫ T

0
[πt(θ + ϵu,Q)− πt(θ,Q]2dwH

t

= u2
∫ T

0
[ζt]

2dwH
t + op(1)
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and

1

ϵ

∫ T

0
∆tdνt =

1

ϵ

∫ T

0
[πt(θ + ϵu,Q)− πt(θ,Q)]dνt

= u

∫ T

0
ζtdνt + op(1).

= uψ + op(1)

as ϵ→ 0 where ψ is a Gaussian random variable with mean zero and variance σ2. Hence the

random variable Lϵ(u) is asymptotically Gaussian with mean −(1/2)σ2u2 and variance σ2u2.

We have proved the convergence of the univariate distributions of the random process

{Lϵ(u), u ∈ Kθ} as ϵ→ 0, after proper scaling. Convergence of all the other finite dimensional

distributions of the random field {Lϵ(u), u ∈ Kθ}, after proper scaling, as ϵ → 0, follows by

an application of the Cramer-Wold device. In order to prove that a sequence of k-dimensional

random vectors Xn converge in law to a k-dimensional random vector X as n → ∞, it is

sufficient to prove that the sequence of random variables λ′Xn converges in law to the random

variable λ′X for all λ ∈ Rk. This is known as the Cramer-Wold technique for converting the

problem of the finite dimensional convergence to convergence of one-dimensional random

variables. Similar ideas have been applied earlier in proving the weak convergence of the

processes. See, for instance, Fokianos and Newmann (2013)). We can use this technique to

prove the convergence of the finite-dimensional distributions to complete the proof of the

lemma.

We now state two lemmas which will be used in the following computations. For proofs

of these lemmas, see Lemmas 5.2 and 5.3 in Mishra and Prakasa Rao (2014).

Lemma 6.2: Let {Dt, 0 ≤ t ≤ T} be a random process such that sup0≤t≤T E(D4
t ) ≤ γ <∞.

Then, for 0 ≤ θ2 ≤ θ1 ≤ T,

E([

∫ θ1

θ2
Dtdt]

4) ≤ |θ1 − θ2|3
∫ θ1

θ2
E[D4

t ]dt ≤ γ|θ1 − θ2|4.

The next lemma gives an inequality for the 4-th moment of a stochastic integral with

respect to a martingale.

Lemma 6.3: Let the process {ft, 0 ≤ t ≤ T} be a random process adapted to a square

integrable martingale {Mt,Ft, t ≥ 0} with the quadratic variation < M >t such that∫ T

0
E(f4s )d < M >s<∞.
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Then

E((

∫ T

0
ftdMt)

4) ≤ 36 < M >T

∫ T

0
E(f4t )d < M >t .

and, in general, for 0 ≤ θ2 ≤ θ1 ≤ T,

E[(

∫ θ1

θ2
ftdMt)

4] ≤ 36(< M >θ1 − < M >θ2)

∫ θ1

θ2
E[f4t ]d < M >t .

Lemma 6.4: Let Γϵ(u) = exp{Lϵ(u)}. Then, for any R > 0, there exist a constant C > 0

such that

Eθ

∣∣∣∣Γ 1
4
ϵ (u2)− Γ

1
4
ϵ (u1)

∣∣∣∣4 ≤ C(u1 − u2)
4, |ui| ≤ R, i = 1, 2.

Proof : Let −R ≤ u1, u2 ≤ R for some R > 0. Let

δt = πt(θ + ϵu1, Q)− πt(θ + ϵu2, Q)

and

δ̄t = ϵ(u1 − u2)Q̄t.

Recall the notation θ + ϵu1 = β1, θ + ϵu2 = β2 used earlier. Let

Rt = exp[
1

4ϵ

∫ t

0
δsdνs −

1

8ϵ2

∫ t

0
δ2sdw

H
s ], R0 = 1.

Note that the process Rt is the process

(
dPβ1

dPβ2

(X)

) 1
4

and, by the Ito formula, we have

dRt = − 3

(32)ϵ2
δ2tRtdw

H
t +

1

4ϵ
δtRtdνt.

Hence

Rt = 1− 3

(32) ϵ2

∫ t

0
δ2sRsdw

H
s +

1

4 ϵ

∫ t

0
δsRsdνs, 0 ≤ s, t ≤ T

Note that

Eθ

∣∣∣∣Γ 1
4
ϵ (u2)− Γ

1
4
ϵ (u1)

∣∣∣∣4
= Eθ(

dPβ2

dPθ
|1−RT |4) = Eβ2)(|1−RT |4)

≤ C
1

ϵ8
Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

+ C
1

ϵ4
Eβ2

∣∣∣∣∣
∫ T

0
δtRtdνt

∣∣∣∣∣
4

12



where C is an absolute constant. In order to get the bounds for the expectations of the

integrals in the above inequality, we now use the Lemmas 6.2 and 6.3.

Let us now estimate the term

Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

.

Note that

I1 ≡ Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

= Eβ2

∣∣∣∣∣
∫ T

0
δ2tRtλ

−1
H (2− 2H)t1−2Hdt

∣∣∣∣∣
4

≤ cT 3
∫ T

0
Eβ2 |δ2tRt|4t4−8Hdt

≤ cT 3
∫ T

0
Eβ1 |δ2t |4t4−8Hdt

≤ cT 8−8H sup
θ,0≤t≤T

Eθ[δ
8
t ]

≤ cϵ8(u2 − u1)
8.

Let us now estimate the term

I2 ≡ Eβ2 |
∫ T

0
δ2tRtdνt|4.

Observe that

I2 ≤ cwH
t

∫ T

0
Eβ2 |δtRt|4dwH

t

≤ cwH
t

∫ T

0
Eβ2 |δtRt|4λ−1

H (2− 2H)t1−2Hdt

≤ cT 2−2H
∫ T

0
Eβ1 |δt|4t1−2Hdt

≤ c(u1 − u2)
4ϵ4.

Combining the above estimates, we obtain that

sup
|ui|≤R,|vi|≤R

(u1 − u2)
−4Eθ|Γ1/4

ϵ (u2)− Γ1/4
ϵ (u1)|4 < c <∞

13



which proves the tightness from the results in Prakasa Rao (1975) or Neuhaus (1971).

As a consequence of Lemma 6.4, it follows that the family of probability measures gen-

erated by the processes {Γ
1
4
ϵ (u), u ∈ Kθ} on CKθ

with uniform topology is tight from the

results in Billingsley (1968) (cf. Prakasa Rao (1987)) and hence the family of probability

measures generated by the processes {Lϵ(u), u ∈ Kθ} on CKθ
is tight.

Lemmas 6.1 and 6.4 together imply that that the family of probability measures gener-

ated by the processes {Lϵ(u, u ∈ Kθ} on CKθ
converge weakly to the probability measure

generated by the processes {L0(u), u ∈ Kθ} on CKθ
from the general theory of weak con-

vergence of probability measures on complete separable metric spaces(cf. Billingsley (1968),

Parthasarathy (1967), Prakasa Rao (1987) and Ibragimov and Khasminskii (1981)). This

completes the proof of Theorem 5.2.

The following maximal inequality is proved in Lemma 5.6 in Mishra and Prakasa Rao

(2014) using the Slepian’s lemma (cf. Leadbetter et al. (1983) and Matsui and Shieh (2009)).

We will use it in the sequel.

Lemma 6.5: Let WH be a fractional Brownian motion with Hurst index H. For any λ > 0,

E[exp{λ max
0≤t≤T

|WH
t |}] ≤ 1 + λ

√
2πT 2H exp{λ

2T 2H

2
}.

We now apply Lemma 6.5 to get the following result.

Lemma 6.6: Let Γϵ(u) = exp{Lϵ(u)}, u ∈ R. Then, for any compact set K ⊂ Θ, and for

any 0 < p < 1, there exists a positive constant C such that

sup
θ∈K

Eθ[(Γϵ(u))
p] ≤ e−C u2

(6. 2)

for all u ∈ R.

Proof: Now, for any 0 < p < 1, we will now estimate Eθ(Γϵ(u))
p. For convenience, let u ∈ R

and v > 0 and let

F1 ≡
∫ T

0
∆tdνt

and

F2 ≡
∫ T

0
∆2

tdw
H
t .

14



Let q be such that p2 < q < p. Then

Eθ[(Γϵ(u))
p] = Eτ [exp{

p

ϵ
F1 −

p

2ϵ2
F2}]

= Eτ [exp{
p

ϵ
F1 −

q

2ϵ2
F2 −

(p− q)

2ϵ2
F2}].

Let

G1 = exp{−(p− q)

2ϵ2
F2}

and

G2 = exp{p
ϵ
F1 −

q

2ϵ2
F2}.

Then

Eθ[(Γϵ(u))
p] = Eθ[G1G2]

≤ (Eθ[G
p1
1 ])1/p1(Eθ[G

p2
2 ])1/p2

by the Holder inequality for any p1 and p2 such that p2 > 1 and 1
p1

+ 1
p2

= 1. Choose

p2 =
q
p2
> 1. Then p1 =

q
q−p2

. Observe that

Eθ[G
p2
2 ] = Eθ[exp{p2(

p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ[exp{
q

p2
(
p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ[exp{
1

ϵ

q

p
F1 −

1

2ϵ2
q2

p2
F2}].

The random variable, under the expectation sign in the last line, is the Radon-Nikodym

derivative of two probability measures which are absolutely continuous with respect to each

other by the Girsanov’s theorem for martingales. Hence the expectation is equal to one.

Hence

Eθ[(Γϵ(u))
p] ≤ (E[exp{−p1(p− q)

2ϵ2
F2}])1/p1

= (E[exp{−γϵ−2F2}])1/p1

where γ = q(p−q)
2(q−p2)

> 0. Let us now estimate Eθ[e
−γϵ−2F2 ]. Applying the inequality

a2 ≥ b2 − 2|b(a− b)|,

15



it follows that

Eθ[e
−γϵ−2F2 ] ≤ exp{−γϵ−2

∫ T

0
∆̄2

tdw
H
t } ×

×Eθ[exp{2γϵ−2(

∫ T

0
(|(πt(θ + ϵu,Q)− Q̄t(θ + ϵu))|+

+|(πt(θ,Q)− Q̄t(θ)|)|Q̄t(θ + ϵu)− Q̄t(θ)|dwH
t }].

We now get an upper bound on the term under the expectation sign on the right side of the

above inequality. Observe that there exists a a constant c > 0, such that,∫ T

0
[πt(θ,Q)− Q̄t(θ)]

2 dwH
t

≤ cϵ2[

∫ T

0
dwH

t ] sup
0≤t≤T

|νt|2

≤ cϵ2T 2−2H sup
0≤t≤T

|νt|2

for some constant c > 0 possibly depending on T,H and Θ where {νt, 0 ≤ t ≤ T} is the

innovation continuous Gaussian martingale with quadratic variation wH . An application of

the Cauchy-Schwartz inequality implies that

sup
θ,θ′=θ+ϵu∈Θ,0<ϵ<ϵ0

[

∫ T

0
|Q̄t(θ + ϵu)− Q̄t(θ)||πt(θ′, Q)− Q̄t(θ

′)|dwH
t ]2

≤ C0ϵ
4u2T 2−2H sup

0≤t≤T
|νt|2

for some constant C0 > 0. Hence

sup
θ,θ′=θ+ϵu∈Θ,0<ϵ<ϵ0

[

∫ T

0
|Q̄t(θ + ϵu)− Q̄t(θ)||πt(θ′, Q)− Q̄t(θ

′)|dwH
t ]

≤ C1ϵ
2|u| sup

0≤t≤T
|νt|.

for some constant C1 > 0. Therefore

sup
θ,θ+ϵu∈Θ,0<ϵ<ϵ0

Eθ[exp{2γϵ−2(

∫ T

0
|πt(θ + ϵu,Q)− Q̄t(θ + ϵu)|

+|(πt(θ,Q)− Q̄t(θ))(Q̄t(θ + ϵu)− Q̄t(θ))|dwH
t }]
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≤ Eθ[exp{Cγ|u| sup
0≤t≤T

|νt|}]

≤ 1 + γC|u|
√
2πT 2H exp{cγ

2T 2Hu2

2
}

for some positive constants C and c depending on H, T and the set Θ by Lemma 6.5.

Applying arguments similar to those in Lemma 2.4 in Kutoyants (1994), we get that

sup
θ∈K,0<ϵ<ϵ0

Eθ[Γ
p
ϵ (u)] ≤ e−C u2

for some positive constant C > 0 depending on T,H and Θ.

An application of Lemma 6.5, proved earlier, shows that the maximum likelihood estima-

tor θ̂ϵ will lie in the compact set K with probability tending to one as ϵ → 0 from Theorem

5.1 in Chapter 1, p.42 of Ibragimov and Khasminskii (1981).

We now give a proof of Theorem 5.1 stated above.

Proof of Theorem 5.1: Let CK denote the family of continuous functions defined on a compact

set K inR. In view of Theorem 5.2, it follows that the family of probability measures generated

by the random processes {Lϵ(u), u ∈ K}, ϵ > 0 on CK converge weakly to the probability

measure generated by the random process {L0(u), u ∈ K} on CK as ϵ → 0. Let ûϵ denote

the infimum of the points of the maxima of the random field {Lϵ(u), u ∈ K}, ϵ > 0 on CK .

Let u0 denote the location of the maxima of the process {L0(u), u ∈ K} on CK . The location

u0 of the maxima is unique almost surely by the property of Gaussian random processes.

Since the random process {Lϵ(u), u ∈ K}, ϵ > 0 on CK converge weakly to the random field

{L0(u), u ∈ K} on CK as ϵ → 0, by the continuous mapping theorem, it follows that the

distribution of θ̂ϵ appropriately normalized converges in law to the distribution of u0 by the

continuous mapping theorem (cf. Billingsley (1968)). Lemma 6.6 implies that the random

variable ûϵ = ϵ−1(θ̂ϵ − θ) ∈ K with probability tending to one as ϵ→ 0. Applying arguments

similar to those in Theorem 10.1 in Chapter II, p.103 of Ibragimov and Khasminskii (1981)

(cf. Prakasa Rao (1968)), we obtain the following result. Let θ be the true parameter. As

a consequence of the arguments and the discussion given above, it follows that the random

variable

ûϵ = ϵ−1(θ̂ϵ − θ)

converges in law to the distribution of the random variable u0, the location of the maximum
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of the random field {L0(u),−∞ < u, v < ∞}, as ϵ → 0, which is the Gaussian distribution

with mean zero and variance σ−2.

Remarks: We have obtained the results stated here under the condition (C) given in The-

orem 5.1. It would be interesting to relax this condition. Kleptsyna and Le Breton (2002b)

have obtained the solution of the optimal filtering problem for linear systems driven by frac-

tional Brownian motions. However it does not seem to be possible to verify the condition

(C) using their computations. Azencott (1982) (cf. Prakasa Rao (1999), p. 118) developed a

Stochastic Taylor’s formula for diffusion processes satisfying a stochastic differential equation

dX
(ϵ)
t = µ(ϵ,X

(ϵ)
t )dt+ ϵ σ(X

(ϵ)
t )dWt, X

(ϵ)
0 = x

where W is the standard Wiener process. Suppose that µ(0, u) > 0 for u ∈ (ℓ, r). Further

suppose that µ(., .) ∈ C3([0,∞)× (ℓ, r)) and σ(.) ∈ C3((ℓ, r)). Let x(.) be the solution of the

ordinary differential equation

dx(t) = µ(0, x(t))dt, x(0) = x.

Then

X
(ϵ)
t = x(t) + ϵ g1(t) + ϵ2g2(t) + ϵ3R(ϵ)(t)

where gi(t), i = 1, 2 are continuous semimartingales with gi(0) = 0, i = 1, 2 and

lim
ϵ→0,h→∞

P ( sup
0≤s≤T

|R(ϵ)(s))| ≥ h) = 0.

Extension of this result to processes driven by martingales will be useful in verifying the

condition (C).
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