

This is the draft of the manuscript submitted to the journal. The revised version of this manuscript has been published in Molecular BioSystems Journal. (http://pubs.rsc.org/en/Content/ArticleLanding/2014/MB/c4mb00004h#!divAbstract)

Prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach

V Hindumathi^{1, 2}, T Kranthi¹, S B Rao¹ and P Manimaran^{1, \$}

¹C R Rao Advanced Institute of Mathematics, Statistics, and Computer Science, University of Hyderabad Campus, Prof. C R Rao Road, Gachibowli, Hyderabad -500046, India.

²Department of Plant Molecular Biology & Bioinformatics, Tamil Nadu Agricultural University, Coimbatore - 641003, India.

Abstract

With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through insilico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing the approach of Csaba Ortutay and his co-workers for the identification of candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 16 novel candidates for cervical carcinogenesis. The disease relevance of these genes was corroborated through literature survey. Also presence of drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as a potential drug targets for cervical cancer.

Keywords: Graph theory, Gene ontology, Candidate genes, Cervical cancer.

Significance

The prevalent chronic disease cervical cancer has an increased system complexity due to the inherent genomic instability of tumor cells. Although human papillomavirus was identified as an aetiological factor in cervical cancer, the key human gene drivers and mechanisms underlying this disease still remains unknown .The true nature of nature of these biological processes underlying the aetiology of cancer of cervix can be brought about by discerning the genes and regulatory mechanisms for carcinogenesis. Prioritizing these causal agents becomes crucial for effective detection of therapeutic interventions and target identification for carcinogenesis. But the identification of such genes is a major bottleneck for the reason that genetics of cancer is still not well understood. The outcome of our work helps the experimentalists, to validate their end results before conducting the real time experiments. The predicted and validated 16 novel targets succors for the development of feasible drugs against cancer of cervix, contributing to major breakthrough in its research.

Introduction

Pertaining to changing lifestyle, people are facing major life threatening disease like diabetes, cancer, hyper tension, heart disease and stroke [1]. These diseases take too long to develop but once they have developed in the body it is difficult to cure them. Among these, cancer considered as a genetic disease is controlled by multiple genes, and leads to unregulated cell growth where the tumors have taken the overall control of the body [2]. Tumors are biased accumulation of proliferating complex tissues with diverse cell types that are involved in heterotypic interactions with one another [3,4]. A difference in the type of cancer/neoplasm is the result of various complex genetic and epigenetic events. Cancers can be classified into 200 different types of which third major death-causing tumors among women is the cervical cancer. Carcinoma of the cervix is a sexually transmitted disease caused by the human papillomavirus (HPV) infection that is formed on the squamous cells of the cervix [5].

A case study in cervical cancer through experimental analysis affirms that the differentially over expressed proteins were identified to be the novel gene for cervical cancer which were validated through Immunohistochemistry procedure. The disadvantage of the method lies in the arena that the novel genes identified had to be validated in a larger series of samples which is time consuming and highly challenging [6]. Likewise, the gene dosage and expression profiling techniques, and other insilico approaches can also be adopted to predict the candidates for cancer state but it requires prolonged time period to end up with a conclusion. Moreover cervical cancer is the outcome of involvement of several genes with low-to-moderate effects therefore it is more desirable to study the multilocus models and potential interactions between genes for disease gene prioritization [7]. The mechanisms and molecular architecture underlying various cancers including cervical carcinoma can be better understood through the identification of other potential causal/susceptibility genes [2]. But the identification of such genesis a major bottleneck for the reason that genetics of cancer is still not well understood.

The disease causing genes are consistently explored since decades but it is still a quest to find the candidate genes underlying a specific disorder. Experimental studies such as linkage studies, gene expression analysis and genome wide classification studies have been found to be successful in identifying the high relative risk genes for a specific disease [8]. But the aforementioned methods have failed drastically in prioritizing the genes responsible for complex diseases. In this scenario, candidate gene approaches were found to be fruitful in identifying the risk variants associated with various diseases of interest such as dementia, cancer, diabetes, asthma, and hypertension [9-11]. Candidate genes are nothing but the genes with known biological function, suspected to be directly or indirectly involved in contributing to the aetiology of the disease [12]. The candidate gene approach is ubiquitously an imperative task that focuses on gene-disease research, biomarkers and drug target selection and has been proven to be powerful in studying the genetic architecture of complex traits and also an economical method for direct gene discovery [13]. This method has gained a considerable edge over the above mentioned approaches in terms of its quickness, simplicity, inexpensiveness, directness, high sensitivity for detecting the genes with small effect, and perfect plasticity in the practical application [14].

Recent advances in high throughput technologies paved a successful path for the candidate gene approaches. Experimental methods such as gene expression profiling, next generation sequencing, gene wide association studies, CHIP-seq, genetical linkage association studies generate candidate genes, [15-17]. The scarcity of disease associated families for linkage

analysis, large genomic regions, hindrances in identification of disease locus, lack of definitive functional conformation of the target gene and the labor insensitivity of the experimental methods urges for the development of various high end insilico approaches for disease gene prioritization.

In such circumstances, a number of insilico strategies have been consequently developed for candidate identification in various fields such as agriculture, biomedical, finance etc. These computer simulated methods have been grouped as ontology, computation and integration based candidate gene identification approaches. The ontology based approaches relies on the availability of annotated gene functional information on internet whereas the computation based approach prioritizes the genes through a computational framework utilizing the web resource based data sets [13]. Some of the computational methods include data mining analysis, Hidden Markov analysis, machine learning, kernel-based data fusion analysis, similarity- based method etc [18-22]. The integrated approach pools the information from various sources such as experimental data, web resource based data and many other features of protein-DNA interactions, molecular module, Protein-protein interactions, path way and gene regulatory networks etc [23-27]. Some of the computational tools that are publicly available online for prioritizing the candidate genes are SUSPECTS, POCUS, G2D, GFSST, ENDEAVOUR [28-32].The candidate gene approach backed by completed genome sequence of human and model organisms aids to dissect and identify genetic risk factors for cervical cancer [33]. But there exists only a limited number of platforms specialized for cancer gene identification which were proven to be less successful.

Most of the insilico candidate gene identification methods rely on the ontology based annotation approach which is nothing but the association of the biological phrases and specific genes. Gene ontology encapsulates the known relation between biological terms and the genes that occur in these terms. This mode of action benefits the biologists to make inference considering cluster of genes rather than a single gene. The terms that are employed in gene ontology annotations are biological process, molecular function and cellular components. The biological process defines the biological phenomena affecting the state of an organism while the molecular function is specific to carry out the function by a gene product and the cellular component is concerned within the cell wherein a gene acts [34].

The problem ensued with the ontology based approaches is that only two thirds of human genes are being annotated and the rest of the fraction yet to be characterized [35]. With the tremendous escalation of human protein interaction data, the entanglement of the above techniques can be conquered through protein-protein interaction networks (PPINs) [36, 37]. Drastic changes that took place over several decades in the field of biological research towards massively parallel techniques creates new insight in this arena but creates problem in formulating meaningful information out of the generated data. These data could be expressed in the form of networks which provide structural annotation, where the nodes are proteins, linked by edges which are nothing but the interactions. Proteins are the representatives of the biological networks and they are realized only if the relationship between essentiality and topological properties such as the degree distribution, clustering coefficients, centrality measures, and community structures of the network are studied [38-40]. Of all the properties graph centrality measures aid in identification nodes that are functionally crucial in the network by ranking elements of a network. Different graph centrality measures such as degree, eccentricity, closeness, centroid values, shortest-path betweenness, current-flow closeness, current-flow betweenness, Katz status index, Eigen vector and PageRank can be computed for every node in the interactome and rank them according to

their scores which further aids in establishing the properties of protein interaction network [41-44].

Thus the analysis of PPINs which are scale free in nature comforts the annotation of the uncharacterized genes facilitating the perception of disease mechanisms and thereby succors for disease gene prioritization [45]. However, even the network based approaches encounter certain limitations in terms of quality and availability of interaction data, missing interactions, false positives etc. The integration of both functional annotations (ontology approach) and network based topological parameters generates the information for protein functions, processes, localization and there by providing a more reliable approach for identification of candidate genes [46].

Thus the integrative computational approaches may be anticipated as the powerful tools for candidate gene identification, contributing to a major breakthrough in the field of cancer research. Protein-protein interaction networks and their properties provide valuable information to understand and analyze the mechanisms of disease particularly cancer [47-52]. The gene ontology terms facilitate the systematic annotation of the genes and thereby elucidate their biological relevance with the experimental results. Csaba Ortutay and his co-workers have already contributed a novel method for identifying candidate genes by consolidation of gene ontology and network based approaches employing only three graph centrality measures [53]. Our work, directs attention towards predicting candidate genes for cervical cancer through the same approach with the human protein interaction network, cervical genes and gene ontology terms, but with ten different graph centrality measures. The advantage of using ten different centrality measures is that each of them scores the proteins in an interactome based on different formalism/concept so that there exists a less chance of missing the biologically significant ones.

In our work we have utilized the gene ontology and network integrative approach of Csaba Ortutay et al which drastically reduces the time involved and efficiently predicts the potential cervical cancer candidate genes with the availability of function, processes and localization information which is highly imperative in any cancer phenomenon. To find the genes that aid in the cervical cancer the protein interactome of all the cancer genes was constructed which resulted in human cancer gene network. A set of experimentally compiled cervical cancer genes is verified through network and gene ontology enrichment approaches. The above study on the cervical cancer furnished 16 novel genes which could be successful potential targets for drug discovery. These 16 genes may have a major role in either creating or causing the carcinogenic tumor in the cervix of women

Materials and methods

Data collection and construction of human cancer gene network

The human protein interaction data was obtained from Human Integrated Protein-Protein Interaction rEference (HIPPIE) database [54]. The main purpose of using HIPPIE dataset is it focuses on likely true Protein-Protein Interaction (PPI) set by generating sub networks around proteins of interest. HIPPIE is an integrated set of human protein interaction data that is constructed according to experimental evidences. The database contains 11,468 proteins with 70,401 human PPIs which are obtained in combination with all the major PPI datasets such as HPRD, MINT, DIP etc [55-57].

The cancer genes involved in oncogenesis were collected from CancerGene database which contains 3164 proteins which are thoroughly curated with information from key publicly available database [58]. The human cancer gene network (HCGN) was constructed by mapping

Human PPI obtained from HIPPIE against cancer genes of CancerGene database which then consisted of 1,694 proteins with 8,672 interactions. After removal of orphan nodes from the HCGN, the giant component culminates with 8,668 interactions among 1,686 proteins.

Cervical cancer gene dataset

The cervical cancer gene dataset was obtained from the cervical cancer gene database that catalogs information of genes associated with cervical cancer. CCDB (Cervical Cancer Gene Database) consists of 538 genes is a specialized, manually curated database that contains information of all experimentally determined cancer genes that are involved in human cervical carcinogenesis [59]. The conflict between the cancer genes and the human proteins was removed from CCDB dataset which then resulted in 176 genes that were found to be common in both the cervical cancer and human PPI datasets.

Topological properties of HCGN

The Human cancer gene network was analyzed for their topological properties such as degree, efficiency, diameter and average clustering coefficient. The importance of a node in the network structure is quantified in terms of centrality measure. Different centrality measures focus on different importance concepts and are categorized in to 6 types based on different concepts of ranking such as neighborhood, distance, shortest path, current flow, feedback and vitality in case of biological networks. Here we have calculated ten different graph centrality measures such as degree, eccentricity, closeness, centroid values, shortest-path betweenness, current-flow closeness, current-flow betweenness, Katz status index, Eigen vector, and PageRank using the tool CentiBin and are defined as follows [41,60].

Degree centrality: is simply the degree of a node, is a confined and consistent measure that contemplates only the connected nodes in the vicinity of a node in an invariable state.

$$C_{deg}(v) = deg(v) \tag{1}$$

Where 'deg' represents the degree of the node v.

Eccentricity centrality; Eccentricity of a node, delineate the distance of a node from the center of the graph. The length of a shortest path between the nodes v and w is denoted by dist (v, w).

$$C_{ecc}(v) = \frac{1}{\max\{dist(v,w):w\in v\}}$$
(2)

Closeness centrality: Closeness C_c (v) is defined as the reciprocal of the total distance from a node v, to all other nodes. It is given by,

$$C_c(v) = \frac{1}{\Sigma_{u \in v} dist(u, v)}$$
(3)

Shortest path betweenness centrality: Shortest path betweenness represents the contribution of a node v, towards communication between all nodes pairs. It is defined as,

$$C_B(v) = \Sigma_{s \neq t \neq v \neq V} \frac{\rho_{st}(v)}{\rho_{st}}$$
(4)

Current flow betweenness centrality: Current flow betweenness of a node v is the average of the current flow over all source-target pairs.

$$C_{CB}(v) = \frac{\Sigma_{s \neq t \in V} l_v^{(st)}}{\frac{1}{2}n(n-1)}$$
(5)

Current flow closeness centrality: For shortest paths, closeness is a measure of the shortest path distance from a certain node to all other vertices. Closeness centrality measures the distance between two vertices 'v' and 'w' as the difference of their potentials p(v) - p(w).

$$C_{cfc}(v) = \frac{n-1}{\sum_{t \notin v} P_{vt}(v) - P_{vt}(t)}$$
(6)

Where P_{vt} (t) equals the potential difference.

Katz status index: It is a weighted number of walks starting from a given node. It is defined by

$$C_k = \sum_{k=1}^{\infty} \alpha^k \left(A^T \right) \vec{1} \tag{7}$$

Where, A is the adjacency matrix of the network, $\vec{1}$ is n-dimensional vector in which every entry is 1 and α denotes the damping factor.

Eigen vector centrality: scores the relative importance of all nodes in the network by weighting connections to highly important nodes more than connections to nodes of low importance. It can be calculated by

$$\lambda C_{IV} = A C_{IV} \tag{8}$$

Where, C_{IV} denotes the Eigen vector and λ denotes the Eigen value.

Centroid values: The centroid value is the most complex node centrality index and is computed by focusing the calculus on couples of nodes (v,w) and systematically counting the nodes that are closer (in term of shortest path) to v or to w. A node v with the highest centroid value is the node with the highest number of neighbors separated by the shortest path to v.

$$C_{cen}(v) = \min\{f(v, w): V\{v\}\}$$
(9)

Where $f(v, w) = \gamma v(w) - \gamma w(v)$ and $\gamma v(w)$ denotes the number of vertices that are closer to v than to w.

PageRank centrality: is a link analysis algorithm that scores the relative importance of web pages in a hyper linked web network, such as WWW, using Eigen vector analysis.it is calculated as follows

$$C_{pr} = dpC_{pr} + (1 - d)\vec{1}$$
(10)

Where P is the transition matrix and d is the damping factor.

Correlation analysis of centrality measures

The ten different centrality measures were calculated for each and every node in the interactome and ranked based on their scores. Pair wise correlation between the various centrality measures was obtained through Spearman's rank correlation coefficient ρ which is defined as

$$\rho = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)} \tag{11}$$

Here, the difference d_i represents the difference in the ranks of each observation on the two variables which here represents the centrality scores. Also for each centrality measures the top 50 ranking gene set is collected and the dataset is pooled into a single list which was further utilized in our study for prioritizing the candidate genes.

Gene ontology enrichment analysis

The gene ontology enrichment analysis was performed with the help of GOrilla which manipulate the flexible threshold statistical approach to determine the GO terms that are significantly enriched at the top of ranked gene list [61]. The significantly enriched GO terms were obtained using two ranked gene list mode with the list of known cervical cancer genes as a target and HCGN genes as a background. The significantly enriched GO terms for Biological process (BP), Molecular function (MF) and Cellular components (CC) were achieved with a p value <0.001 and the number of genes that are associated with a specific GO terms ($3\leq B\leq 50$). The range for number of genes associated with a specific GO term is chosen in such a way that it scrutinizes only the GO terms which were annotated for at least three but not more than 50 genes. The value of B is considered an important aspect for the gene enrichment analysis because high value of B increases noise by populating the enrichment results with non-specific GO terms whereas small values of B reduce the signal by rejecting specific GO terms [45, 62]. Thus p-value threshold (<0.001) and the B- value ($3\leq B\leq 50$) were chosen in such a way to maximize the signal (specific GO terms) and reduce the noise (non-specific GO terms) in the enrichment analysis. The genes associated with the significantly enriched GO terms of BP, MF and CC were found to be analogous to the corresponding GO terms of HCGN genes and henceforth acknowledged as the genes with specific disease ontologies.

Prediction of candidate genes for cervical cancer

To predict the candidates of cervical cancer three gene sets A, B and C were analyzed, where the Set A consists of genes obtained from amalgamating the top 50 scoring genes of each of the ten different centrality measures. The set B and C were composed of the known cervical cancer genes and genes with specific disease ontologies respectively. The top50 scoring pooled gene list obtained from the ten different centrality measures is related with the known cervical cancer genes which in turn it is correlated with the significant disease ontology genes retrieved from gene enrichment analysis. The genes that are mutual to top50 scoring genes and significant disease ontology but not generic to cervical cancer are depicted as cervical cancer candidates.

Results

Human cancer gene network and its topological properties

With the above theoretical approach, the HCGN was constructed in such a way that the cancer genes contributing to carcinogenesis accumulation was to form a sub network within the HIPPIE dataset. The HCGN is constructed by mapping HIPPIE dataset of 70,401 interactions among 11,468 proteins against the 3,164 catalogued cancer genes. The network has 8,672 edges among 1,694 nodes. The orphan nodes of HCGN are removed and the core network is encompassed with 8,668 interactions between 1,686 proteins.

To define the interaction network its topological parameters like degree, diameter, correlation, efficiency, etc., have a pivotal role in enhancing them. Precisely, for the HCGN the average degree, the diameter, assortative correlation and global efficiency were found to be 10.28, 9, 0.44, and 0.31 respectively. The degree value, as expected follows a power law distribution with an exponent of 2.23 and the average clustering coefficient for the HCGN network was found to be 0.1698. The interaction network concerned at the molecular level is considered as scale-free in nature since it has been marked by the presence of hubs and also is evident from the scaling exponent.

Graph centralities of HCGN

In our study we have utilized ten different centrality measures to ascertain the potentiality of individual proteins in HCGN. After consolidation of top 50 scoring gene sets of the ten different centrality measures 115 (set A) genes were obtained which are nothing but the representative generic cancer genes that can be used to predict the candidate genes for the cervical cancer. The pair wise correlation coefficients of the ten centrality measures depicted for the HCGN elucidate that they all are positively correlated and their correlation value lies above 0.59 as represented in

Table 1. It also elucidates that the ranking of the nodes differs based on the formulary of each centrality measure.

GO enrichment analysis of the top 50 high scoring genes

The gene ontology enrichment analysis was performed for the top 50 scoring genes in order to justify the role of centrality measures in identifying the significant cervical cancer related gene ontological terms. The genes were enriched using GOrilla software by taking 115 top 50 high scoring genes (set A) as a target and HCGN genes as a background which then yielded 290 disease specific ontology genes (set C). The GO terms enriched for all the three domains Biological Process, Molecular function and Cellular component were obtained and were enumerated as 85. The cellular component contains only six ontology terms whereas the molecular function contains 17. Comparatively the biological process preponderate the cellular components and molecular function's gene ontologies. Among the cellular component the membrane related GO terms (GO:0016323, GO:0016324, GO:0031965) were dominant over the receptor complex (GO:0035631, GO:0043235) . But comparing the biological process and molecular function the cellular component remained suppressed in case of top50 high scoring genes. While considering the molecular function the binding factor ontological terms dominated the activity related GO terms in terms of their count. Interestingly 14-3-3 protein binding, IkappaB kinase activity and nitric-oxide synthase regulator activity have a high enrichment value of 14.55. A list of 62 significantly enriched GO terms was associated with the biological process for pooled top50 scoring HCGN gens where the signaling pathway is numerous. Among the biological processes, B cell lineage commitment (GO:0002326) and primary miRNA processing (GO:0031053) were observed to have high enrichment score of 14.55. Most of the ontological terms prevailing in our list such as 14-3-3 protein binding (GO: 0071889),SMAD protein complex assembly (GO:0007183),regulation of G1/S transition of mitotic cell cycle (GO:2000045),positive regulation of apoptotic signaling pathway (GO:2001235) ,regulation of intrinsic apoptotic signaling pathway (GO:2001242) has been associated with various cell cycle process ,growth signaling pathways which are capable of altering the intracellular mechanisms that are capable of causing cancer. The detailed list of GO terms for the HCGN genes is given in **Supplementary data S1**.

GO enrichment analysis of known cervical cancer genes

The GO enrichment for the known cervical cancer genes is performed through GOrilla by claiming the known cervical cancer genes of 176 (set B) as the target and HCGN gene set of 1,686 as a source. The analysis is performed with a p-value < 0.001. It resulted in 102 GO terms from all the three ontologies BP, MF and CC with the B-value ($3 \le B \le 50$). The biological process was dominant over the molecular function and the cellular component. The cellular component contained only two GO terms proteinaceous extracellular matrix (GO:0005578) with the enrichment value of 3.58 and extracellular matrix (GO:0031012) with the value of 3.56. The molecular function contained 11 GO terms among which the different binding terms were dominant over the activity. The biological process contained 89 GO terms among which the regulatory terms were found to be dominant over the rest. We have found out that our list enriched ontological terms for known cervical cancer genes were confederated with the cycle, apoptotic and regulation process. Some of them were as follows negative regulation of cell morphogenesis involved in differentiation (GO:0010771), positive regulation of intracellular transport (GO:0032388), positive regulation of chemokine production (GO:0032722), cellular response to acid (GO:0071229), negative regulation of cell growth (GO:0030308), positive regulation of cell adhesion (GO:0045785), cell-cell adhesion (GO:0016337). The detailed list of enriched ontological terms for known cervical cancer genes is provided in the **Supplementary** data S2.

Genes with high-network scores and significant GO terms as predicted candidate genes

Towards predicting candidate genes for cervical cancer which are of therapeutic value, we rationally correlated the three major set of genes. The set A is from the pooled top 50 scoring ranked genes list whereas the set B is the cluster of known cervical cancer genes and the set C is a set of genes with significantly enriched disease ontologies. Altogether, set A contains 115 genes among which set A and set B share 25 genes in common while set B contains 176 cervical cancer genes. The setC contained 290 genes obtained from 102 GO terms where the set B and set C shared 79 genes in common. 25 genes participated among set A and set B while set A and set C shared 30 genes in common. Those genes that are common to top50 scoring gene list and genes with significant disease ontologies but were not amid the known cervical cancer genes were identified to be the candidate genes for cervical cancer. The genes of the three sets are logically juxtaposed which represents the strategy employed for predicting the candidate genes for cervical cancer and the same is depicted in the Venn diagram **Figure 2**. The candidate genes for cervix related carcinogenesis is estimated to be 16 which are unique genes neither found as common in any of the sets.

The predicted candidates of cervical cancer

The 16 potential protein targets identified for cervical cancer were explored to find the disease relevance for their distinctive role in cervical cancer and was discovered that they are somehow significant to the carcinogenic advance in a cell. Literatures cram for the identified candidates of

the cervical cancer helps in analyzing how important the predicted disease gene is. The list of genes prioritized for cervical carcinogenesis along with their description is given in **Table 2**.

Among the predicted 16 novel candidate genes, the gene EP300 commonly known as p300 is involved in pathways of cancer and has a foremost role in the process of cell proliferation and differentiation. EP300 is concerned with few key functions as inhibition of apoptosis, proliferation and accumulation of mutation. The JUN gene is a putative transformation gene which takes part in the transformation pathways of cancer. AKT2 gene is supposed to contribute to malignant phenotype of a subset of human cancer whereas the protein encoded by the SMAD3 gene functions as a transcriptional modulator that regulate the carcinogenic onset. The CAV1 and TSC2 gene are tumor suppressor gene candidates.

The phosphoprotein PML gene functions as a transcription factor and a tumor suppressor. This gene regulates the p53 response to oncogenic signals that have an escort role in cervical cancer through p53 signaling pathway. Amplification of ERBB3 gene or overexpression of this protein has been reported in numerous cancers where the heterodimerization of it leads to activation of pathways which in turn leads to cell proliferation and differentiation. The proto-oncogene SRC has an extensive role in regulation of embryonic development and cell growth. Any mutations in this gene could be involved in the malignant progression of cancer. With the above summary, it can be relished that the predicted candidates have a significant role in carcinogenesis and special attention could be drawn towards identifying potential drug targets for the cervical cancer.

Discussion

In recent years, protein interaction networks are primarily used in targeting genes responsible for a disease. Towards identifying candidate protein target essential for cervix related carcinogenesis, we used an integrative network and gene ontological approach. The network properties provides a system perspective of complex molecular mechanism and helps to identify the functional elements while the gene enrichment analysis helps to identify the ontological features of a gene set. In general the disease gene prioritization is a difficult task through wet lab experiments which perpetuate for generations. But the computational method for predicting disease gene is achieved through various methods where protein interaction network is in vicinity towards researchers. Network analysis is a potent approach in understanding the disease phenotype and probing for therapeutic targets [53]. Also the functional importance of the protein can be distinguished from the network through the centrality measures.

Earlier, Csaba Ortutay when predicting candidate genes used only three centrality measures along with GO terms. But in our analysis we have used ten different centralities which were the efficient tools for network analysis for predicting cervical cancer candidates. The edge gained by using ten different centrality measures is that almost all the biologically prominent genes were obtained in either of the top scoring genes of each centrality measure which are in confirmative with the gene enrichment analysis. The ten different centralities were calculated for 1,686 proteins in the interactome and the scores of these measures show a strong correlation and it is also used to quantify the importance of protein in the interactome. Gene ontology enrichment analysis provides means of identification of significantly overrepresented GO terms which could be effectively used to get biological insight from a given set of genes [62]. The biological relevance of a protein can be extracted from the Gene ontology terms which provide information through the BP, MF and CC terminologies. In our work we have predicted the candidate genes for cervical cancer employing the approach of Csaba Ortutay but with more number of centrality

measures. 16 novel cervical cancer candidate genes were prioritized by logically juxtaposing the set A obtained from the result of genes pooled through top 50 scoring genes of the ten centrality measures, the set B with known cervical cancer genes and the set C containing the genes with significant disease ontologies..

Validation of the predicted candidates is indispensable to conclude them as a potential target for a disease state. The predicted cervical cancer genes were analysed through literature survey to prove them that they can act as a targets for cervical carcinogenesis. The annotation of the predicted genes for vindication of their disease relevance is as follows.

AGTR1, Angiotensin II receptor, type1gene, also known as AT1R, could be an effective anticancer therapeutic target that contributes to tumor growth and angiogenesis [63]. The effect of Angiotensin II receptor on cervical cancer cell was observed by kikkawa and his co-workers and ended up that the AT1R gene was found to be over expressed in comparison with the control tissue when the immunohistochemistry was carried out for normal and neoplastic cervical tissues. This gene induces the secretion of vascular endothelial growth factor which there by increases the invasiveness of carcinoma cell lines leading to cervical cancer progression [64]. The AKT2 (V-AKT Murine Thymona viral oncogene) gene promotes the metastasis of tumor cells and was found to be over expressed in most of the cancer types. The presence of AKT2 activated oncogene product in cervical cancer cell lines was examined by Page and co-workers. Their scrutiny resulted that AKT is highly phosphorylated in HPV negative cancer cell line and may endow to tumorigenesis of cervical cancer [65].

The gene ARRB1 also known as β -arrestin 1 was found not to have direct implication for cervical carcinogenesis but it is overexpressed in gastric cardiac adenocarcinoma as is evident from the Wang et al work [66]. A recent study states that, the human papillomavirus that cause the cervical cancer has been linked with an increased risk of cardiovascular diseases. ARRB2 member of beta-arrestin protein family was shown to inhibit beta-adrenergic receptor function. Recently many studies have revealed that this gene may act as an adapter for scaffolding many intracellular signalling networks that may lead to cancerous conditions. Understanding the role of these β -arresting in carcinogenesis is highly complicate because of their complex biological and regulation events [67]. A better knowledge regarding the prognosis and oncogenic potential of βarrestins encumbrances the identification of potential candidate genes for various tumours including carcinoma of cervix. Whereas the CAV1, Ceaveolin-1 gene, the main component of caveolae plasma membrane is found in most of the cell types that can be regarded as candidate for tumor suppressor and it is over expressed in terminally differentiated cells. CAV1 contributes to tumorigenesis of cervical cancer due its down regulation in cells transformed by HPV infection [68].

The CFTR gene is primarily involved in the transport of chloride ions. Peng along with his coworkers from their studies on cervical cancer suggested that CFTR may act as potential therapeutic target for cervical cancer because of its higher expression levels [69]. EP300 which is also designated as p300 gene plays a crucial role in cell differentiation and mutational events and any abnormalities in this gene contributes to carcinogenesis. Stina and group evaluated the role expression of p300 in the outcome of cervical cancer where the immunohistochemistry study revealed that the transcription factor p300, was up regulated in cervical intra Epithelial neoplasia [70] .The gene ERBB3, (V-erb-b2 avian erythroblastic leukaemia viral oncogene homolog3 gene) encodes a member of epidermal growth factor receptor family of receptor tyrosine kinases. Being the third member of the ErBB proto oncogene family, c-erbB-3 (ErBB3) is toughly expressed and amplified in numerous cancers. The immunohistochemical study carried out by Hunt and his co-workers have put forward that c-erBB-3 is widely expressed in cervical carcinomas [71]. The Insulin receptor gene, INSR has important roles in cancer. As Serrano and his co-workers report, the receptor expression was diverse that the tyrosine phosphorylation of them is correlated with high expression level [72]. However they show no effect on proliferation, migration or invasion of the cell line. The genes JAK2 (Janus kinase2) and JUN (jun proto-oncogene) are involved in various processes such as cell growth development and differentiation was found to have and altered gene expression in cervical cancer as is evident from Carlos et al work.JAK2 the protein tyrosine kinase involved in JAK-STAT pathway was found to be down regulated and JUN of focal adhesion pathway was overexpressed with the ratios of -2.9 and 4.8 respectively[73].

The gene LYN (V-Yes-1 Yamguchi Sarcoma viral related oncogene) plays an important role in the regulation of innate and adaptive immune responses. LYN signalling may play a vital role in survival and proliferation of some types of cancer cells. The patent of Iftner et al has produced a list of diagnostic markers for determining the genetic and environmental factors for cervical carcinogenesis. LYN was found to be one of the diagnostic markers among the list of genes that contributes to cervical cancer due to HPV infection [74]. PML, the protein encoded by Promyelocytic leukaemia gene is a member of tripartite motif family and regulates the P53 response to oncogenic signals. PML reinforces carcinogenesis by exhibiting a synergetic action

with the HPV infection, the main convict causing cervical cancer. This is evident from the observations drawn by Neha Singh and group suggesting that down regulation of PML gene coupled with HPV infection contributes to cervical carcinogenesis [75]. The SMAD3 gene demonstrates that disruption of TGF-beta/Smad signaling pathway exists in human cervical cancer and over expression of it may contribute malignant progression of human cervical tumours [76]. The gene SRC (v-src avaian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog), also known as C-SRC is a proto oncogene. Over expression of SRC has been associated with enhanced cancer cell growth [77]. Over expression of phosphorylated SRC has been found in the cervical cancer cell lines and clinical cervical cancer tissue [778]. Recently Teng and his co-workers in their study have ascertained that src signalling play an essential role in cervical cancer progression [79] and the gene TSC2, the tumor suppressor protein, Tuberous Sclerosis contributes to carcinogenesis due to its degradation by the E6 protein of HPV16 strain, the prime stimulant of cervical carcinogenesis [80]. The viral protein HPV16E6 phosphorylates P70S6 kinase, in the absence of insulin by interacting with TSC2 and thereby abrogating its function. Thus the relinquishment of TSC2's function contributes to HPV16-E6 induced carcinogenesis.

The predicted genes were searched against the DrugMap Central and Therapeutic target database to identify the available drugs had either formerly served as an objective for cervical cancer and to analyse its metabolic pathway. The predicted candidate gene JUN, JAK2, INSR, SMAD3, ERBB3, SRC were all searched against TTD [81]. All these genes have been identified as either clinical trial or research or successful targets for major diseases like cancer, diabetes, vascular disease. These genes could also be a potential target for the cervical cancer. The JUN gene is

involved in pathways related to cancer, renal cell carcinoma and diverse signalling pathways. The genes JAK2, INSR, ERBB3, and SRC reported to be the candidates of the cervical cancer and validated through TTD database is involved in cancer pathway and also they have an extensive role in signalling pathways. This information is summarized in **Supplementary data S3**.

The genes such as AGTR1, AKT2, CFTR, and LYN have been predicted to be the targets for drug through DMC [82]. The gene AGTR1 has the action of antagonist and they are seen in major pathways such as calcium signalling pathway, Arf6 signalling events, neuro active ligand-receptor interaction. The gene AKT2 is involved in protein serine/threonine kinase activity and has a specific role in phosphorylating several known proteins and it is involved in Insulin signalling pathway, pathways in cancer, pancreatic cancer, colorectal cancer, prostate cancer and small cell lung cancer. The cystic fibrosis Trans membrane conductance regulator (CFTR) gene is involved in pathways such as ABC transporters, bile secretion, pancreatic secretion, gastric acid secretion. The LYN gene is involved in ATP binding and is seen in chemokine signalling pathway, B cell receptor signalling pathway, Fc epsilon RI signalling pathway. These targets could be analysed for the cervical cancers too to identify the drugs for the cervix related carcinogenesis.

The genes identified as potential has already been either a clinical or research or successful target for a number of diseases primarily cancer and this in turn could also be analysed for the cervix related oncogenesis. The protein-protein interaction network with the cancer genes available has paved the way for identifying the candidate genes for cervix related carcinogenesis through network properties and gene ontologies. In our work we have used ten different graph centrality measures rather than three as used by Csaba Ortutay in his work. Various centrality measures ranks the nodes based on different concepts such as neighbourhood, distance shortest path etc and thereby abstracts the potential candidate genes. This is evident from our work that the genes LYN,ERRB3 scored among the top scoring genes for only of Eigenvector centrality and the genes AKT2, AGTR1, TSC2 that were present only in Eccentricity centrality but not among the other ten different centrality measures were proven to be the potential genes for cervical carcinogenesis. The presence of the candidate genes along with their ranking in the respective centrality measure are identified and are presented in **Table 3**.

Thus the GO terms coupled withusage of ten different centrality measures contributed in successful prioritization of 16 novel cervical cancer candidate genes. Among the 16 predicted genes, the genes EP300, SRC and SMAD3 were present in all the ten centrality measures except that EP300 is lacking in eccentricity centrality. Interestingly, all these three genes were among top 15 in their ranking with in all the ten centrality measures. Also from the literature survey, these three gens were proven to more successful in causing cervical cancer which implies that they can act as better candidates compared to the rest 13 genes for cervical carcinogenesis. The predicted genes which were proved for their role in cervical carcinogenesis could be searched for the drugs and may serves as a potential drug targets for cancer of cervix. Thus through our analysis we have procured 16 novel candidate genes for cervical carcinogenesis which might facilitate the identification of diagnosis biomarkers and development of drug targets and thereby boosts up the cervical carcinoma research.

Acknowledgements:

The authors VH, TK, SBR and PM would like to thank Dept. of Science and Technology, Government of India, for their financial support (DST-CMS GoI Project No. SR/S4/MS: 516/07 Dated 21.04.2008).

References

- Sharma M, Majumdar PK. Occupational lifestyle diseases: An emerging issue. Indian J Occup Environ Med. 2009; 13:109-12.
- Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med. 2004; 10:789–99.
- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011; 144: 646-674.
- 4. Hahanan D, Weinberg RA, Francisco S. The Hallmarks of Cancer. Cell, 2000; 100:57-70.
- Sherris J, Herdman C, Elias C. Cervical cancer in the developing world. West J Med. 2001; 175: 231–233.
- Rajkumar T, Sabitha K, Vijayalakshmi N, Shirley S, Bose MV, Gopal G, Selvaluxmy G. Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer 2011, 11:80.
- Kim MG, Flomerfelt FA, Lee KN, Chen C, Schwartz RH. A putative 12 transmembrane domain cotransporter expressed in thymic cortical epithelial cells. J. Immunol. 2000; 164:3185-92.
- Strachan T, Read AP. Chapter 15: Identifying human disease genes. Human Molecular genetics. New York: Wiley- Liss; 1999.
- Yoshida T, Yoshimura K. Outline of disease gene hunting approaches in the Millennium Genome Project of Japan. Proc. Jpn. Acad. 2003; 79:34–50.
- Schubert K, von Bonnsdorf H, Burke M, Ahlert I, Braun S, Berner R, Deichmann KA, Heinzmann A. A comprehensive candidate gene study on bronchial asthma and juvenile idiopathic arthritis. Dis. Markers 2006; 22:127–32.

- 11. Miyata T. Large-scale candidate gene approach to identifying hypertension-susceptible genes. Hypertens Res. 2008; 31:173–74.
- 12. Tabor HK, Neil JR, Richard MM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002; 3:391-397.
- Zhu M, Zhao S. Candidate Gene Identification Approach: Progress and Challenge Int J Biol Sci. 2007; 3: 420–27.
- 14. Zhu, Meng-Jin, Xiang L, Zhao SH. Digital candidate gene approach (DigiCGA) for identification of cancer genes. Cancer Susceptibility. Humana Press, 2010. 105-129.
- 15. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, Johnson JA, Hayes DF, Klein T, Krauss RM, Kroetz DL, McLeod HL, Nguyen AT, Ratain MJ, Relling MV, Reus V, Roden DM, Schaefer CA, Shuldiner AR, Skaar T, Tantisira K, Tyndale RF, Wang L, Weinshilboum RM, Weiss ST, Zineh I. The Pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 2007; 81:328–45.
- Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet 2010, 11:476–86.
- 17. Kim Y-A, Wuchty S, Przytycka TM. Identifying Causal Genes and Dysregulated Pathways in Complex Diseases. PLoS Comput Biol. 2011; 7:e1001095.
- 18. Perez-Iratxeta C, Bork P, Andrade MA. Association of genes to genetically inherited diseases using data mining. Nat Genet 2002; 31:316-19.
- Pellegrini-Calace M, Tramontano A. Identification of a novel putative mitogen-activated kinase cascade on human chromosome 21 by computational approaches. Bioinformatics. 2006; 22:775-778.
- 20. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics. 2005; 6:55.
- Bie TD, Tranchevent L-C, van Oeffelen LMM, Moreau Y. Kernel-based data fusion for gene prioritization. Bioinformatics 2007; 23: i125-i132.
- 22. Freudenberg, Jan, and P. Propping. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 2002; 18:S110-S115.
- 23. Sugaya N, Ikeda K, Tashiro T, Takeda S, Otomo J, Ishida Y, Shiratori A, Toyoda A, Noguchi H, Takeda T, Kuhara S, Sakaki Y, Iwayanagi T. An integrative in silico

approach for discovering candidates for drug-targetable protein-protein interactions in interactome data. BMC Pharmacol. 2007;7:10

- 24. Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006; 78:1011-25.
- 25. Rossi S, Masotti D, Nardini C, Bonora E, Romeo G, Macii E, Benini L, Volinia S. TOM: a web-based integrated approach for identification of candidate disease genes. Nucleic Acids Res 2006; 34:W285–W292.
- George RA, Liu JY, Feng LL, Bryson-Richardson RJ, Fatkin D, Wouters MA. Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res 2006; 34:e130.
- 27. Yonan AL, Palmer AA, Smith KC, Feldman I, Lee HK, Yonan JM, Fischer SG, Pavlidis P, Gilliam TC. Bioinformatic analysis of autism positional candidate genes using biological databases and computational gene network prediction. Genes Brain Behav. 2003; 2:303-320.
- 28. Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics. 2006; 22:773-774.
- 29. Turner FS, Clutterbuck DR, Semple CA. POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol 2003; 4:R75.
- 30. Perez-Iratxeta C, Wjst M, Bork P, Andrade MA. G2D: a tool for mining genes associated with disease. BMC Genet. 2005; 6:45.
- Zhang P, Zhang J, Sheng H, Russo JJ, Osborne B, Buetow K. Gene functional similarity search tool (GFSST). BMC Bioinformatics. 2006; 7:135.
- 32. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y. Gene prioritization through genomic data fusion. Nat Biotechnol. 2006; 24:537-44.
- Collier LS, Largaespada DA. Transforming science: cancer gene identification. Curr Opin Genet Dev 2006; 16:23–9.
- 34. Bard JB, Rhee SY. Ontologies in biology: design, applications and future challenges." Nat Rev Genet 2004; 5:213-22.

- 35. Chen J, Xu H, Aronow BJ, Jegga AG: Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 2007, 8:392.
- Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 2011; 12:56-68.
- 37. Wang E, Zou J, Zaman N, Beitel LK, Trifiro M, Paliouras M. Cancer systems biology in the genome sequencing era: Part 1, dissecting and modeling of tumor clones and their networks. Semin Cancer Biol 2013; 23;279-85.
- Holme P, Huss M, Jeong H. Subnetwork hierarchies of biochemical pathways, Bioinformatics 2003; 19:532–38.
- 39. Wuchty S, Stadler PF. Centers of complex networks. J Theor Biol 2003; 223:45-53.
- Manimaran, P, Hegde SR, Mande SC. Prediction of conditional gene essentiality through graph theoretical analysis of genome-wide functional linkages. Mol BioSyst 2009; 5:1936-42.
- Zhang A. Chapter 4: Basic Properties and Measurements of protein interaction network. Protein Interaction Networks Computational Analysis. Cambridge University Press 2009; 33-49.
- 42. Kranthi T, Rao SB, Manimaran P. Identification of synthetic lethal pairs in biological systems through network information centrality. Mol BioSyst 2013; 9:2163-7.
- Caldarelli G. Scale-Free Networks: Complex webs in nature and technology. Oxford UK: Oxford University Press; 2007.
- 44. Manimaran P, Hedge SR, Mande SC. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Comput Biol 2008; 4:e1000237.
- 45. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005; 122:957-68.
- 46. Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 2009; 10:73.

- 47. Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol 2010; 11:R53.
- 48. Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol. 2009; 5:e1000601.
- 49. Kann MG. Protein interactions and disease: Computational approaches to uncover the etiology of diseases. Brief Bioinform 2007; 8:333–46.
- 50. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci USA. 2007; 104:8685-90.
- 51. Jonsson PF, Bates PA. Global topological features of cancer proteins in the human interactome. Bioinformatics 2006; 22: 2291–97.
- 52. Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 2005; 21:4205–08.
- 53. Ortutay C, Vihinen M. Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res 2009; 37:622-8.
- 54. Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. HIPPIE: Integrating protein interaction networks with experiment based quality scores.PLoS One 2012; 7:e31826.
- 55. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human Protein Reference Database--2009 update.Nucleic Acids Res 2009; 37:D767-72.
- 56. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G.MINT: the Molecular INTeraction database.Nucleic Acids Res 2007; 35:D572-4.
- 57. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the database of interacting proteins. Nucleic Acids Res. 2000; 28:289-91.

- 58. Higgins ME, Claremont M, Major JE, Sander C, Lash AE. CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res. 2007; 35:D721-6.
- 59. Agarwal SM, Raghav D, Singh H, Raghava GPS. CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res 2011; 39:D975-9.
- 60. Junker HB, Koschützki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 2006; 7:219
- 61. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009; 10:48
- 62. Vashisht S, Bagler G. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis. PLoS One 2012; 7:e49401.
- 63. Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 2005;16:293-9.
- 64. Liao YD, Xu H, Han Q, Lei J, Zhang YY, Wang ZH. Expression of angiotensin II type 1 receptor in cervical squamous cell carcinoma and its clinical significance. Zhonghua Zhong Liu Za Zhi [Chinese journal of oncology] 2007; 29:360-4.
- 65. Page C, Huang M, Jin X, Cho K, Lilja J, Reynolds RK, Lin J.Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int J Oncol 2000; 17:23-8.
- 66. Wang LG, Su BH, Du JJ. Expression of β-arrestin 1 in gastric cardiac adenocarcinoma and its relation with progression. Asian Pac J Cancer Prev 2012; 13:5671-5.
- 67. Hu S, Wang D, Wu J, Jin J, Wei W, Sun W. Involvement of β-arrestins in cancer progression. Mol Biol Rep. 2013; 40:1065-71.
- 68. Chan TF, Su TH, Yeh KT, Chang JY, Lin TH, Chen JC, Yuang SS, Chang JG. Mutational, epigenetic and expressional analyses of caveolin-1 gene in cervical cancers. Int J Oncol 2003; 23:599-604.
- 69. Peng X, Wu Z, Yu L, Li J, Xu W, Chan HC, Zhang Y, Hu L. Overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with human cervical cancer malignancy, progression and prognosis. Gynecol Oncol. 2012; 125:470-6.
- 70. Syrjänen S, Naud P, Sarian L, Derchain S, Roteli-Martins C, Longatto-Filho A, Tatti S, Branca M, Erzen M, Serpa-Hammes L, Matos J, Arlindo F, Sakamoto-Maeda M, Costa

S, Syrjänen K. p300 expression is related to high-risk human papillomavirus infections and severity of cervical intraepithelial neoplasia but not to viral or disease outcomes in a longitudinal setting. Int J Gynecol Pathol 2010; 29:135-45.

- Hunt CR, Hale RJ, Armstrong C, Rajkumar T, Gullick WJ, Buckley CH. c-erbB-3 protooncogene expression in uterine cervical carcinoma. Int J Gynecol Cancer. 1995; 5:282-285.
- 72. Serrano ML, Sánchez-Gómez M, Bravo MM, Yakar S, LeRoith D. Differential expression of IGF-I and insulin receptor isoforms in HPV positive and negative human cervical cancer cell lines. Horm Metab Res 2008; 40:661-7.
- 73. Pérez-Plasencia C, Vázquez-Ortiz G, López-Romero R, Piña-Sanchez P, Moreno J, Salcedo M. Genome wide expression analysis in HPV16 cervical cancer: identification of altered metabolic pathways. Infect Agent Cancer 2007; 2:16.
- 74. Iftner T, Stubenrauch F, Manawapat A, Kjaer SK. Diagnostic markers for determining the predisposition to the development of cervical cancer and oligonucleotides used for the determination. Patent Appln:US 13/294, 905 (2012).
- 75. Singh N, Sobti RC, Suri V, Nijhawan R, Sharma S, Das BC, Bharadwaj M, Hussain S. Downregulation of tumor suppressor gene PML in uterine cervical carcinogenesis: impact of human papillomavirus infection (HPV). Gynecol Oncol. 2013; 128:420-6.
- Ki KD, Tong SY, Huh CY, Lee JM, Lee SK, Chi SG. Expression and mutational analysis of TGF-beta/Smads signaling in human cervical cancers. J Gynecol Oncol 2009; 20:117-21.
- 77. Karmakar S, Foster EA, Smith CL. Unique roles of p160 coactivators for regulation of breast cancer cell proliferation and estrogen receptor-alpha transcriptional activity. Endocrinology. 2009; 150:1588–1596.
- 78. Cheng SJ, Kok SH, Lee JJ, Yen-Ping Kuo M, Cheng SL, Huang YL, Chen HM, Chang HH, Chiang CP. Significant association of SRC protein expression with the progression, recurrence, and prognosis of oral squamous cell carcinoma in Taiwan. Head Neck. 2012; 34:1340–1345.
- Hou T, Xiao J, Zhang H, Gu H, Feng Y, Li J. Phosphorylated c-Src is a novel predictor for recurrence in cervical squamous cell cancer patients. Int J Clin Exp Pathol 2013; 6:1121-7.

- 80. Zheng L, Ding H, Lu Z, Li Y, Pan Y, Ning T, Ke Y. E3 ubiquitin ligase E6AP-mediated TSC2 turnover in the presence and absence of HPV16 E6. Genes Cells 2008; 13:285-94.
- 81. Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Liu X, Zhang J, Han B, Zhang P, Chen Y. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res 2012; 40:D1128-36.
- Fu C, Jin G, Gao J, Zhu R, Ballesteros-Villagrana E, Wong ST. DrugMap Central: an online query and visualization tool to facilitate drug repositioning studies. Bioinformatics 2013; 29:1834-6.

Tables: (Three)

Centrality measures	Degree	Eccentricity	Closeness	Centroid values	SP betweenness	CF closeness	CF betweenness	Katz status	Eigen vector	PageRank
Degree	1.00	0.67	0.87	0.93	0.88	0.99	0.96	0.97	0.87	0.97
Eccentricity		1.00	0.78	0.73	0.59	0.70	0.61	0.73	0.75	0.59
Closeness			1.00	0.94	0.75	0.91	0.78	0.96	0.98	0.78
Centroid values				1.00	0.81	0.95	0.86	0.96	0.91	0.87
SP betweenness					1.00	0.84	0.95	0.82	0.71	0.92
CF closeness						1.00	0.92	0.98	0.91	0.93
CF betweenness						-	1.00	0.89	0.76	0.98
Katz status								1.00	0.96	0.90
Eigen vector									1.00	0.77
PageRank										1.00

Table 1: The pair wise correlation coefficients between ten different centrality measures.

S.	Predicted	Full name	Gene ID
no.	candidate		
	genes		
1	AGTR1	Angiotensin II receptor, type 1	185
2	AKT2	v-akt murine thymoma viral oncogene homolog 2	208
3	ARRB1	Arrestin, beta 1	408
4	ARRB2	Arrestin, beta 2	409
5	CAV1	Caveolin 1, caveolae protein, 22kDa	857
6	CFTR	Cystic fibrosis transmembrane conductance regulator (ATP-	
		binding cassette sub-family C, member 7)	1080
7	EP300	E1A binding protein p300	2033
8	ERBB3	v-erb-b2 erythroblastic leukemia viral oncogene homolog 3	2065
		(avian)	
9	INSR	Insulin receptor	3643
10	JAK2	Janus kinase 2	3717
11	JUN	Jun-proto-oncogene	3725
12	LYN	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog	4067
13	PML	Promyelocytic leukemia	5371
14	SMAD3	SMAD family member3	4088
15	SRC	v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog	6714
		(avian)	
16	TSC2	Tuberous sclerosis 2	7249

Table 2: The predicted 16 candidate genes of cervical cancer and their corresponding Gene ids

 obtained from NCBI database.

S. No.	Candidate	Centrality measure (Ranking)			
	Gene				
1.	AGTR1	2(34)			
2.	AKT2	2(45)			
3.	ARRB1	1(36), 5(21), 6(47), 7(17), 10(25)			
4.	ARRB2	1(27), 4(48), 5(32), 6(29), 7(28), 8(43), 10(27)			
5.	CAV1	3(33), 4(29), 5(37), 7(48)			
6.	CFTR	5(47), 7(34)			
7.	EP300	1(4), 3(7), 4(7), 5(4), 6(4), 7(3), 8(4),9(4),10(3)			
8.	ERBB3	9(37)			
9.	INSR	1(41),5(43), 6(39) ,7(41),8(41), 9(36), 10(39)			
10.	JAK2	1(44), 6(41), 8(33), 9(26)			
11.	JUN	1(21), 3(25), 4(21), 5(33), 6(20), 7(38), 8(18), 9(14), 10(28)			
12.	LYN	9(40)			
13.	PML	3(42), 4(45), 6(50), 8(37), 9(28)			
14.	SMAD3	1(12), 2(18), 3(11), 4(11), 5(11), 6(12), 7(11), 8(12), 9(15), 10(10)			
15.	SRC	1(3), 2(19), 3(4), 4(4), 5(3), 6(3), 7(4), 8(3), 9(2), 10(4)			
16.	TSC2	2(23)			

Table 3: The 16 predicted candidate genes of cervical cancer and their existence in the respective centrality measure along with their rankings in that particular centrality measure. The order of the centrality measure is 1-Degree, 2-Eccentricity, 3-Closeness, 4-Centroidvalues,

5-SP-betweenness, 6-CF-closeness, 7-CF-betweenness, 8-Katzstatus, 9-Eigenvector and 10-PageRank.

Figures Legends: (Two)

Figure 1: Degree distribution of HCGN observed to follow power law with an exponent Υ = 2.23 and exhibits the scale free nature.

Figure 2: Venn diagram to predict the candidates for cervical cancer. The pooled list of top 50 scoring genes of each centrality measure, known cervical cancer genes set and the list of genes with significant disease ontologies were logically juxtaposed.16 novel genes were predicted to be candidate genes for cervix related cancer.