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1 Introduction

Change-point problems or disorder problems have been of interest to statisticians for their ap-

plications and for probabilists for their challenging problems. Recent applications of change-

point methods include finance, statistical image processing and edge detection in noisy images

which can be considered as a multidimensional change-point and boundary detection prob-

lem. Estimation of change-points in economic models such as split or two-phase regression

and changes in hazard or failure rates in modelling life times after bone-marrow transplan-

tation of leukemia patients is of practical interest. A study of change-point problems and

their applications are discussed in the monograph on change-point problems edited by Carl-

stein et al. [3]. Csorgo and Horvath [5] discuss limit theorems in change point analysis.

Deshayes and Picard [7] study asymptotic distributions of tests and estimators for change

point in the classical statistical model of independent observations (cf. Prakasa Rao [28]).

The problem of estimation of both the change point and parameters in the drift and diffusion

has been considered recently by many authors in continuous as well as discrete time. The

disorder problem for diffusion type processes, that is, processes driven by Wiener process, is

investigated in Kutoyants [15], Kutoyants [16] and more recently in Kutoyants [17]. Kutoy-

ants [16] considered the problem of simultaneous estimation of the trend parameter and the
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change point for diffusion type processes. Prakasa Rao [29] gives a comprehensive survey on

problems of estimation for diffusion type processes observed over in continuous time or over

discrete time. For some recent work on the change point problems for diffusion processes,

see Lee et al. [19], Song and Lee [33], De Gregorio and Iacus [6] and Iacus and Yoshida

[10],[11]. Mishra and Prakasa Rao [21] considered the problem of estimation of change point

for switching fractional diffusion processes.

Statistical inference for diffusion type processes satisfying stochastic differential equations

driven by Wiener processes have been studied earlier and a comprehensive survey of various

methods is given in Prakasa Rao [29]. There has been a recent interest to study similar

problems for stochastic processes driven by a fractional Brownian motion (fBm) in view of

their applications for modeling time series which are long-range dependent. In a recent paper,

Kleptsyna and Le Breton [13] studied parameter estimation problems for fractional Ornstein-

Uhlenbeck type process. This is a fractional analogue of the Ornstein-Uhlenbeck process,

that is, a continuous time first order autoregressive process X = {Xt, t ≥ 0} which is the

solution of a one-dimensional homogeneous linear stochastic differential equation driven by

a fractional Brownian motion (fBm) WH = {WH
t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1).

Such a process is the unique Gaussian process satisfying the linear integral equation

Xt = X0 + θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the obser-

vation {Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly

consistent as T → ∞. A survey of results on statistical inference for fractional diffusion pro-

cesses, that is, processes driven by a fractional Brownian motion, is given in Prakasa Rao [30].

For more recent work on parametric estimation for fractional Ornstein-Uhlenbeck process,

see Xiao et al. [34], Hu and Nualart [8] and Hu et al. [9].

Our aim in this paper is to consider estimation of the drift parameter θ and the change

point τ for a model of fractional diffusion process with small diffusion coefficient. We consider

the model

dXt = St(θ, τ,X) dt+ ϵ dWH
t , X0 = x0, 0 ≤ t ≤ T(1. 2)

where {WH
t , 0 ≤ t ≤ T} is the fractional Brownian motion with known Hurst index H ∈

[12 , 1), St(θ, τ, x) = ht(θ, x) if t ∈ [0, τ ] and St(θ, τ, x) = gt(θ, x) if t ∈ (τ, T ], with ht(θ, x)

and gt(θ, x) known functions. We estimate the drift parameter θ and the change point τ

by the maximum likelihood estimator (θ̂ϵ, τ̂ϵ) and study its asymptotic properties following
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the methods in Ibragimov and Khasminskii [12] and Prakasa Rao [26]. We show that the

normalized sequence

(ϵ−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ))

has a limiting distribution as ϵ → 0. We note that the change point problems belong to

a class of non-regular statistical problems in the sense that the rate of convergence of the

estimator for the change point is higher than the standard rate of convergence of the maximum

likelihood estimator of a smooth parameter in the classical case of independent and identically

distributed observations with a density function which is twice differentiable and with finite

positive Fisher information. This was earlier observed by Chernoff and Rubin [4], Deshayes

and Picard [7] in their study of estimation of the change point and by Prakasa Rao [26] in his

study of estimation of the location of the cusp of a continuous density. Observe that the rate

of convergence of the estimator τ̂ϵ is ϵ
2 as ϵ→ 0 and the rate of convergence of the estimator

θ̂ϵ is ϵ as ϵ→ 0.

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes

discussed in the following are (Ft)-adapted. Further the natural filtration of a process is

understood as the P -completion of the filtration generated by this process. Let WH =

{WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1),

that is, a Gaussian process with continuous sample paths such that WH
0 = 0, E(WH

t ) = 0

and

E(WH
s W

H
t ) =

1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral

equation

Yt =

∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a non-vanishing non-random

function. For convenience we write the above integral equation in the form of a stochastic

differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0;Y0 = 0(2. 3)

driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2. 4)
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is not a stochastic integral in the Ito sense but one can define the integral of a deterministic

function with respect to a fractional Brownian motion in a natural sense (cf. Norros et al.

[23], Alos et al. [1]). Even though the process Y is not a semimartingale, one can associate

a semimartingale Z = {Zt, t ≥ 0} which is called a fundamental semimartingale such that

the natural filtration (Zt) of the process Z coincides with the natural filtration (Yt) of the

process Y (Kleptsyna et al. [14]). Define, for 0 < s < t,

kH = 2H Γ (
3

2
−H)Γ(H +

1

2
),(2. 5)

κH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)

Γ(32 −H)
,(2. 7)

wH
t = λ−1

H t2−2H ,(2. 8)

and

MH
t =

∫ t

0
κH(t, s)dWH

s , t ≥ 0.(2. 9)

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et

al. [23]) and its quadratic variation is given by < MH
t >= wH

t . Further more the natural

filtration of the martingale MH coincides with the natural filtration of the fBm WH . In fact

the stochastic integral ∫ t

0
B(s)dWH

s(2. 10)

can be represented in terms of the stochastic integral with respect to the martingale MH .

For a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH− 1

2 (r − s)H− 1
2dr, 0 ≤ s ≤ t(2. 11)

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue

measure (see Samko et al. [32] for sufficient conditions). The following result is due to

Kleptsyna et al. [14].

Therorem 2.1: Let MH be the fundamental martingale associated with the fractional Brow-

nian motion WH defined by (2.9). Then∫ t

0
f(s)dWH

s =

∫ t

0
Kf

H(t, s)dMH
s , t ∈ [0, T ](2. 12)

P -a.s. whenever both sides are well defined.
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Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et

al. [29]) so that

QH(t) =
d

dwH
t

∫ t

0
κH(t, s)

C(s)

B(s)
ds, t ∈ [0, T ](2. 13)

is well-defined where wH and κH are as defined in (2.8) and (2.6) respectively and the

derivative is understood in the sense of absolute continuity. The following theorem due to

Kleptsyna et al. [14] associates a fundamental semimartingale Z associated with the process

Y such that the natural filtration (Zt) of Z coincides with the natural filtration (Yt) of Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s

to L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be

defined by

Zt =

∫ t

0
κH(t, s)B−1(s)dYs(2. 14)

where the function κH(t, s) is as defined in (2.6). Then the following results hold:

(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =

∫ t

0
QH(s)dwH

s +MH
t(2. 15)

where MH is the fundamental martingale defined by (2.9),

(ii) the process Y admits the representation

Yt =

∫ t

0
KB

H(t, s)dZs(2. 16)

where the function KB
H is as defined in (2.11), and

(iii) the natural filtrations (Zt) and (Yt) coincide.

Kleptsyna et al. [14] derived the following Girsanov-type formula as a consequence of the

Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t − 1

2

∫ t

0
Q2

H(t)dwH
t }.(2. 17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure and

the probability measure of the process Y under P ∗ is the same as that of the process V defined
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by

Vt =

∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T(2. 18)

under the probability measure P.

3 Assumptions and main result

Let a process X = {Xt, 0 ≤ t ≤ T} be observed over the time interval [0, τ ] and suppose it

follows the stochastic integral equation

Xt = x0 +

∫ t

0
hu(θ,X)du+ ϵ

∫ t

0
dWH

u , t ∈ [0, τ ](3. 1)

and suppose the process X∗ = {X∗(t), τ < t ≤ T} is observed over the time interval (τ, T ]

satisfying the stochastic integral equation

X∗
t = Xτ +

∫ t

τ
gu(θ,X

∗)du+ ϵ

∫ t

τ
dWH

u , t ∈ (τ, T ].(3. 2)

where WH is the fractional Brownian motion with known Hurst parameter H ∈ [12 , 1). Let

St(θ, τ, x) = ht(θ, x), 0 ≤ t ≤ τ

= gt(θ, x), τ < t ≤ T.

Suppose that the change point τ ∈ [t1, t2] ⊂ [0, T ] where t1 and t2 are known but arbitrary

in the interval [0, T ]. We assume that the functions gt(θ, .) and ht(θ, .) are known but the

drift parameter θ ∈ Θ compact and the change point τ are unknown. For convenience, we

denote the process X∗ by X over the interval (τ, T ]. It is required to estimate the change

point τ and the drift parameter θ from the realization of X over the interval [0, T ]. Let

(θ̂ϵ, τ̂ϵ) denote the maximum likelihood estimator (MLE) of (θ, τ). We are interested in the

asymptotic behaviour of the MLE (θ̂ϵ, τ̂ϵ) as ϵ→ 0.

Let x = {x(t), 0 ≤ t ≤ T} with x(0) = x0 be the solution of the ordinary differential

equation

dx(t)

dt
= ht(θ, x), 0 ≤ t ≤ τ

= gt(θ, x), τ < t ≤ T.
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We assume that the trend coefficient St(θ, τ,X) satisfies the following conditions which

ensure the existence and the uniqueness of a unique solution of the equation (1.2).

(A.1) There exists a constant L > 0 independent of θ such that

|St(θ, τ,X)− St(θ, τ, Y )| ≤ L |Xt − Yt|+ L

∫ t

0
|Xs − Ys|ds, 0 ≤ t, τ ≤ T, θ ∈ Θ.

(A.2) There exists a constant M > 0 independent of θ such that

|St(θ, τ,X)| ≤M (1 + |Xt|) +M

∫ t

0
(1 + |Xs|)ds, t, τ ∈ [0, T ], θ ∈ Θ.

The existence and the uniqueness of the solution of the stochastic differential equation

(1.2) follow from the results in Nualart and Rascanu [24].

The general method of obtaining the asymptotic properties of the maximum likelihood

estimator (MLE) for the change point τ by Taylor’s expansion of the log-likelihood is not

applicable in this situation due to non-differentiability of the likelihood ratio with respect to

the parameter τ. Therefore we follow the technique used by Prakasa Rao [26], Ibragimov and

Khasminskii [12], Kutoyants [15] and others. We prove the weak convergence of the appro-

priately normalized log-likelihood ratio random field and appeal to the continuous mapping

theorem to study the asymptotic behaviour of the MLE.

Let

At(θ, τ, x) =
d

dwH
t

∫ t

0
κH(t, s)Ss(θ, τ, x)ds, 0 ≤ t ≤ T.(3. 3)

Consider the transformed processes

At(θ, τ,X) =
d

dwH
t

∫ t

0
κH(t, s)Ss(θ, τ,X)ds, 0 ≤ t ≤ T,(3. 4)

Yt =

∫ t

0
κH(t, s)dX(s), 0 ≤ t ≤ T(3. 5)

and the martingale

MH
t =

∫ t

0
κH(t, s)dWH

s , 0 ≤ t ≤ T.(3. 6)
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Then the process Y = {Yt, 0 ≤ t ≤ T} defined by (3.5) satisfies the stochastic differential

equation

dYt = At(θ, τ,X)dwH
t + ϵ dMH

t , 0 ≤ t ≤ T(3. 7)

where MH is the fundamental martingale given by (3.6) and Y is a semimartingale (cf.

Kleptsyna et al. [14]).

(A.3) Suppose the function At(θ, τ, x) satisfies the condition that there exists a constant

C > 0 independent of θ and τ such that

|At(θ, τ, x)−At(θ, τ, y)| ≤ C sup
0≤s≤t

|xs − ys|, 0 ≤ t ≤ T, 0 ≤ t1 ≤ τ ≤ t2 ≤ T, θ ∈ Θ.

Let

∆t = At(θ + ϵu, τ + ϵ2v,X)−At(θ, τ,X)(3. 8)

and

∆̄t = At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)(3. 9)

for given u, v ∈ R.

(A.4)(i) Let

δt = At(θ + ϵu1, τ + ϵ2v1, X)−At(θ + ϵu2, τ + ϵ2v2, X).

Denote τ + ϵ2v1 = ζ1, τ + ϵ2v2 = ζ2, θ + ϵu1 = β1 and θ + ϵu2 = β2 for convenience. Suppose

there exists a neighbourhood N(θ,τ) of (θ, τ) such that

sup
(β1,ζ1),(β2,ζ2)∈Nθ,τ

sup
0≤t≤T

Eβ1,ζ1(δ
8
t ) <∞.(3. 10)

(A.4)(ii) Suppose that there exists a positive constant Jθ,τ depending on θ and τ such that

1

ϵ2

∫ τ+ϵ2v

τ
∆̄2

tdw
H
t = vλ−1

H J2
θ,ττ

1−2H + o(1)

as ϵ→ 0.

In addition to the conditions (A.1) to (A.4), we assume that the following condition holds:

(A.5) There exist constants c > o, and C > 0 possibly depending on H,T and Θ such that

c g(u, v) ≤ ϵ−2
∫ T

0
∆̄2

tdw
H
t ≤ C g(u, v), τ ∈ [t1, t2], θ ∈ Θ
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for some g(u, v) = k1|u|α + k2|v|β > 0 for some k1 > 0, k2 > 0, α > 0 and β > 0.

The filtrations of the transformed process Y and the process X coincide by Theorem 1

of Kleptsyna et al. [14] and hence the problem of estimation of the parameter (θ, τ) from

the process X and the problem of estimation of the bivariate parameter (θ, τ) from the

process Y are equivalent. We now consider the problem of estimation of the smooth drift

parameter θ and the change point τ based on the observation {Yt, 0 ≤ t ≤ T} by the method

of maximum likelihood. Let (θ̂ϵ, τ̂ϵ) denote the maximum likelihood estimator of (θ, τ) based

on the observation {Yt, 0 ≤ t ≤ T}. Let

J∗
θ,τ = Jθ,τ

√
τ1−2Hλ−1

H .(3. 11)

Let

Bt(θ, x) =
d

dwH
t

∫ t

0
κH(t, s)hs(θ, x)ds, 0 ≤ t ≤ τ,

and

Ct(θ, x) =
d

dwH
t

∫ t

τ
κH(t, s)gs(θ, x)ds, τ ≤ t ≤ T,

Let

Vt(θ, x) = Bt(θ, x)I[t ≤ τ ]− Ct(θ, x)I[t > τ ].(3. 12)

where I[A] denotes the indicator function of set A. Suppose that the functions B and C are

differentiable with respect to θ. Let B′ and C ′ denote the derivatives of B and C with respect

to θ. Define

[σ(θ, τ)]2 =

∫ τ

0
[B′

t(θ, x)]
2dwH

t +

∫ T

τ
[C ′

t(θ, x)]
2dwH

t =

∫ T

0
[A′

t(θ, τ, x0)]
2dwH

t .(3. 13)

In addition to the conditions (A.1)− (A.5), we assume that the following condition holds:

(A.6) The functions Bt(θ, x) and Ct(θ, x) have two continuous bounded derivatives with re-

spect to θ and the first derivativesB′
t(θ,X) and C ′

t(θ,X) are continuous inX in L2([0, T ], dw
H
t )

uniformly in θ ∈ Θ at the point x = {xt, 0 ≤ t ≤ T}. Furthermore for any compact set

KT = [τ1, τ2] ⊂ (t1, t2),

(i) infθ∈Θ,τ∈KT
[
∫ τ
0 [Bt(θ, x)]

2dwH
t +

∫ T
τ [Ct(θ, x)]

2dwH
t > 0,

(ii) infθ∈Θ,τ∈KT
[Vτ (θ, x)]

2 > 0, and

(iii) infθ∈Θ,τ∈KT
[σ(θ, τ)]2 > 0.
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Let

L0(u, v) = uξ − 1

2
u2[σ(θ, τ)]2 + J∗

θ,τW1(v)−
1

2
J∗
θ,τ

2v if v ≥ 0(3. 14)

= uξ − 1

2
u2[σ(θ, τ)]2 + J∗

θ,τW2(−v) +
1

2
J∗
θ,τ

2v if v < 0

where {W1(v), v ≥ 0} and {W2(v), v ≥ 0} are independent standard Wiener processes and ξ

is a Gaussian random variable with mean zero and variance [σ(θ, τ)]2.

We now state the main result of this paper.

Theorem 3.1: Suppose the conditions (A.1) − (A.6) hold. Let θ denote the true drift pa-

rameter and τ the true change point. Let (θ̂ϵ, τ̂ϵ) denote the maximum likelihood estimator of

(θ, τ) based on the observation of the process X satisfying the stochastic differential system

defined by (3.1) and (3.2). Then, as ϵ→ 0, the normalized random vector

(ϵ−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ))

converges in law to a random vector ψ whose distribution is the distribution of location of

the maximum of the random field {L0(u, v),−∞ < u, v <∞} as defined above.

4 Weak convergence of the log-likelihood ratio random field

At first, we state a lemma which gives upper bounds on the differenceXt−xt and Eτ (Xt−xt)2

where the process {Xt, 0 ≤ t ≤ T} satisfies the stochastic differential equation system defined

by the equations (3.1) and (3.2) and the function xt is the solution of the corresponding

ordinary differential equation discussed above.

Lemma 4.0: Let the trend function St(θ, τ, x) satisfy the conditions (A.1) and (A.2). Then

there exist nondecreasing positive functions Ct and Cit, i = 1, 2 independent of θ, τ such that,

with probability one,

(i) sup
0≤s≤t

|Xs − xs| ≤ Ctϵ sup
0≤s≤t

|WH
s |

and

(ii) sup
0≤s≤t

Eθ,τ (Xs − xs)
2 ≤ C1tϵ

2E[ sup
0≤s≤t

|WH
s |2] ≤ C2tt

2Hϵ2.
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Proof: Let ut = |Xt − xt|. Then by the condition (A.1),

ut ≤
∫ t

0
|Sv(θ, τ,X)− Sv(θ, τ, x)|dv + ϵ|WH

t |

≤ L

∫ t

0
[

∫ u

o
urdr]dv + L

∫ t

0
uvdv + ϵ sup

0≤s≤t
|WH

s |.

Applying the Grownwall’ lemma (cf. Lemma 1.11, Kutoyants [16]), it follows that there

exists a constant Ct > 0 such that

sup
0≤s≤t

|Xs − xs| ≤ Ctϵ sup
0≤s≤t

|WH
s |.

In particular, it follows that

sup
0≤s≤t

Eθ,τ (Xs − xs)
2 ≤ C1tϵ

2E[ sup
0≤s≤t

|WH
s |2]

≤ C2tϵ
2t2H

by Proposition 1.9 in Prakasa Rao [30].

In view of Lemma 4.0 and the condition (A.3), it follows that there exists a constant CT

depending on T but independent of θ, τ, such that

sup
t1≤,τ,τ ′≤t2,θ∈Θ

sup
0≤t≤T

Eθ,τ [At(θ, τ
′, X)−At(θ, τ

′, x)]2 ≤ CT ϵ
2.(4. 1)

In particular, it follows that

sup
t1≤τ≤t2,θ∈Θ

sup
0≤t≤T

Eθ,τ |∆t − ∆̄t|2 ≤ CT ϵ
2.(4. 2)

Let Pθ,τ be the probability measure generated by the process Y on the space C(Θ× [0, T ])

associated with the uniform topology when (θ, τ) is the true change point. Consider the log-

likelihood ratio random field

Lϵ(u, v) = log
dPθ+uϵ,τ+ϵ2v

dPθ,τ
(4. 3)

=
1

ϵ

∫ T

0

[
At(θ + uϵ, τ + ϵ2v,X)−At (θ, τ,X)

]
dMH

t

− 1

2ϵ2

∫ T

0

[
At(θ + uϵ, τ + ϵ2v,X)−At (θ, τ,X)

]2
dwH

t
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for fixed u, v such that 0 ≤ τ, τ + ϵ2v ≤ T and θ, θ + uϵ ∈ Θ.

Let K denote a compact subset of Θ×[0, T ] such that (θ, τ) ∈ K and (θ+ϵu, τ+ϵ2v) ∈ K.

Let CK denote the space of continuous functions defined on the set K. Let Kθ×τ = {(u, v) :
(θ, τ) ∈ K and (θ + ϵu, τ + ϵ2v) ∈ K}.

Theorem 4.1: Under the conditions (A.1) to (A.4), the family of probability measures, gen-

erated by the log-likelihood ratio random field {Lϵ(u, v), (u, v) ∈ (u, v) ∈ Kθ×τ} on CKθ×τ

associated with the uniform norm topology, converge weakly to the probability measure gen-

erated by the random field {L0(u, v), (u, v) ∈ Kθ×τ} on CKθ×τ
as ϵ→ 0.

From the general theory of weak convergence of probability measures on the space CKθ×τ

associated with the uniform norm topology (cf. Billingsley [2], Parthasarathy [25], Prakasa

Rao [28]), in order to prove Theorem 4.1, it is sufficient to prove that the finite dimensional

distributions of the random field {Lϵ(u, v), (u, v) ∈ Kθ×τ} converge to the corresponding

finite dimensional distributions of the random field {L0(u, v), (u, v) ∈ Kθ×τ} and the family

of probability measures generated by the random fields {Lϵ(u, v), (u, v) ∈ Kθ×τ} for different

ϵ is tight.

5 Proof of Theorem 4.1

Before we give a proof of Theorem 4.1, we prove some related lemmas.

Lemma 5.1: Under the conditions (A.1) − (A.4), the finite dimensional distributions of

the random field {Lϵ(u, v), (u, v) ∈ Kθ×τ} converge to the corresponding finite dimensional

distributions of the random field {L0(u, v), (u, v) ∈ Kθ×τ} as ϵ→ 0.

Proof: We will first investigate the convergence of the one-dimensional marginal distributions

of the random field Lϵ(u, v) as ϵ→ 0.

Suppose v > 0. Note that

Lϵ(u, v) =
1

ϵ

∫ T

0
∆tdM

H
t − 1

2ϵ2

∫ T

0
∆2

tdw
H
t .

and, for v > 0,∫ T

0
∆2

tdw
H
t =

∫ τ

0
∆2

tdw
H
t +

∫ τ+ϵ2v

τ
∆2

tdw
H
t +

∫ T

τ+ϵ2v
∆2

tdw
H
t .

12



Observe that∫ τ

0
∆2

tdw
H
t =

∫ τ

0
[Bt(θ + uϵ,X)−Bt(θ,X)]2dwH

t

=

∫ τ

0
[Bt(θ + uϵ,X)−Bt(θ,X)− uϵB′

t(θ,X)]2dwH
t

+2uϵ

∫ τ

0
(Bt(θ + uϵ,X)−Bt(θ,X))B′

t(θ,X)dwH
t

−u2ϵ2
∫ τ

0
[B′

t(θ,X)]2dwH
t .

Following arguments in Kutoyants [16], p.50 and p.168 and Lemma 5.1 in Mishra and Prakasa

Rao [21], it can be checked that

1

ϵ2

∫ τ

0
[∆t − uϵB′

t(θ,X)]2dwH
t

≤ cϵ2 + 2u2
∫ τ

0
[B′

t(θ,X)−B′
t(θ, x)]

2dwH
t = op(1)

and

1

ϵ2

∫ T

τ+ϵ2v
[∆t − uϵC ′

t(θ,X)]2dwH
t

≤ cϵ2 + 2u2
∫ T

τ+ϵ2v
[C ′

t(θ,X)− C ′
t(θ, x)]

2dwH
t = op(1).

Hence
1

ϵ2

∫ τ

0
∆2

tdw
H
t = u2

∫ τ

0
[B′

t(θ, x)]
2dwH

t + op(1)(5. 1)

and
1

ϵ2

∫ T

τ+ϵ2v
∆2

tdw
H
t = u2

∫ T

τ
[C ′

t(θ, x)]
2dwH

t + op(1).(5. 2)

Following computations in Lemma 5.1 of Mishra and Prakasa Rao [21], it follows that

1

ϵ2

∫ τ+ϵ2v

τ
∆2

tdw
H
t = vλ−1

H J2
θ,ττ

1−2H + op(1)

= v[J∗
θ,τ ]

2 + op(1)

as ϵ→ 0. Let us now study the asymptotic behaviour of the random variable

1

ϵ

∫ T

0
∆tdM

H
t

13



as ϵ→ 0. Note that

1

ϵ

∫ T

0
∆tdM

H
t =

1

ϵ

∫ τ

0
∆tdM

H
t +

1

ϵ

∫ τ+ϵ2v

τ
∆tdM

H
t +

1

ϵ

∫ T

τ+ϵ2v
∆tdM

H
t

= I1 + I2 + I3 (say).

Following arguments given Kutoyants [16], p.50 and p.168 and Lemma 5.1 in Mishra and

Prakasa Rao [21], it follows that

I1 = u

∫ τ

0
B′

t(θ, x)dM
H
t + op(1),(5. 3)

I3 = u

∫ T

τ
C ′
t(θ, x)dM

H
t + op(1),(5. 4)

and I2 is asymptotically normal with mean zero and variance [J∗
θ,τ ]

2v. Combining the above

arguments, it follows that the family of random variables Lϵ(u, v) converges in law to the

random variable L0(u, v) defined by (3.14) for any fixed (u, v) as ϵ→ 0. Similar analysis can

be done for the case v < 0.

We have proved the convergence of the univariate distributions of the random field

{Lϵ(u, v), (u, v) ∈ Kθ×τ} as ϵ → 0, after proper scaling. Convergence of all the other fi-

nite dimensional distributions of the random field {Lϵ(u, v), (u, v) ∈ Kθ×τ}, after proper

scaling, as ϵ→ 0, follows by an application of the Cramer-Wold device.

Remarks : In order to prove that a sequence of k-dimensional random vectors Xn converge

in law to a k-dimensional random vector X as n → ∞, it is sufficient to prove that the

sequence of random variables λ′Xn converges in law to the random variable λ′X for all

λ ∈ Rk. This is known as the Cramer-Wold technique for converting the problem of the

finite dimensional convergence to convergence of one-dimensional random variables. Similar

ideas have been applied earlier in proving weak convergence of processes. See Fokianos and

Newmann (A goodness-of-fit test for Poisson count processes, Electronic Journal of Statistics,

Vol.7 (2013), pp. 793-819). We have taken recourse to this technique in the proof given above.

We now state two lemmas which will be used in the following computations. For proofs

of these lemmas, see Lemmas 5.2 and 5.3 in Mishra and Prakasa Rao [21].

Lemma 5.2: Let {Dt, 0 ≤ t ≤ T} be a random process such that sup0≤t≤T E(D4
t ) ≤ γ <∞.

14



Then, for 0 ≤ θ2 ≤ θ1 ≤ T,

E([

∫ θ1

θ2
Dtdt]

4) ≤ |θ1 − θ2|3
∫ θ1

θ2
E[D4

t ]dt ≤ γ|θ1 − θ2|4.

The next lemma gives an inequality for the 4-th moment of a stochastic integral with

respect to a martingale.

Lemma 5.3: Let the process {ft, 0 ≤ t ≤ T} be a random process adapted to a square

integrable martingale {Mt,Ft, t ≥ 0} with the quadratic variation < M >t such that∫ T

0
E(f4s )d < M >s<∞.

Then

E((

∫ T

0
ftdMt)

4) ≤ 36 < M >T

∫ T

0
E(f4t )d < M >t .

and, in general, for 0 ≤ θ2 ≤ θ1 ≤ T,

E[(

∫ θ1

θ2
ftdMt)

4] ≤ 36(< M >θ1 − < M >θ2)

∫ θ1

θ2
E[f4t ]d < M >t .

Lemma 5.4: Let Γϵ(u, v) = exp{Lϵ(u, v)}. Suppose the conditions (A.1)− (A.6) hold. Then,

for any R > 0, there exist a constant C > 0 such that

Eθ,τ

∣∣∣∣Γ 1
4
ϵ (u2, v2)− Γ

1
4
ϵ (u1, v1)

∣∣∣∣4 ≤ C[(u1 − u2)
4 + (v1 − v2)

2], |ui|, |vi| ≤ R, i = 1, 2.

Proof : Without loss of generality, let v1 > v2,

δt = At(θ + ϵu1, τ + ϵ2v1, X)−At(θ + ϵu2, τ + ϵ2v2, X)

and

δt = At(θ + ϵu1, τ + ϵ2v1, x)−At(θ + ϵu2, τ + ϵ2v2, x).

Recall the notation τ + ϵ2v1 = ζ1, τ + ϵ2v2 = ζ2 and θ + ϵu1 = β1, θ + ϵu2 = β2 used earlier.

Let

Rt = exp[
1

4ϵ

∫ t

0
δsdM

H
s − 1

8ϵ2

∫ t

0
δ2sdw

H
s ], R0 = 1.

15



Note that the process Rt is the process

(
dP(β1,ζ1)

dP(β2,ζ2)
(X)

) 1
4

and, by the Ito formula, we have

dRt = − 3

(32)ϵ2
δ2tRtdw

H
t +

1

4ϵ
δtRtdM

H
t .

Hence

RT = 1− 3

(32) ϵ2

∫ T

0
δ2tRtdw

H
t +

1

4 ϵ

∫ T

0
δtRtdM

H
t .

Note that

Eθ,τ

∣∣∣∣Γ 1
4
ϵ (u2, v2)− Γ

1
4
ϵ (u1, v1)

∣∣∣∣4
= Eθ,τ (

dP(β2,ζ2)

dPθ,τ
|1−RT |4) = E(β2,ζ2)(|1−RT |4)

≤ C
1

ϵ8
Eβ2,ζ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

+ C
1

ϵ4
Eβ2,ζ2

∣∣∣∣∣
∫ T

0
δtRtdM

H
t

∣∣∣∣∣
4

where C is an absolute constant. In order to get the bounds for the expectations of the

integrals in the above inequality, we now use the Lemmas 5.2 and 5.3.

Let us now estimate the term

Eβ2,ζ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

.

Suppose that v1 > v2. Let v = v1 − v2 > 0. Then

Eβ2,ζ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

≤ cEβ2,ζ2

∣∣∣∣∣
∫ τ

0
δ2tRtdw

H
t +

∫ T

τ+vϵ2
δ2tRtdw

H
t

∣∣∣∣∣
4

+cEβ2,ζ2

∣∣∣∣∣
∫ τ+vϵ2

τ
δ2tRtdw

H
t

∣∣∣∣∣
4

for some absolute constant c > 0. Note that

I1 ≡ Eβ2,ζ2

∣∣∣∣∣
∫ τ+vϵ2

τ
δ2tRtdw

H
t

∣∣∣∣∣
4
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= Eβ2,ζ2

∣∣∣∣∣
∫ τ+vϵ2

τ
δ2tRtλ

−1
H (2− 2H)t1−2Hdt

∣∣∣∣∣
4

≤ cv3ϵ6
∫ τ+vϵ2

τ
Eβ2,ζ2 |δ2tRt|4t4−8Hdt

by Lemma 5.2. Now

sup
0≤t≤T

Eβ2,ζ2([δ
2
tRt]

4) = sup
0≤t≤T

Eβ1,ζ1(δ
8
t ) <∞

by the condition (A.4)(i) since

Rt = (
dP(β1,ζ1)

dP(β2,ζ2)
(X))1/4.

As a consequence of the Lemma 5.2 and the upper bound obtained above, it follows that

I1 = Eβ2,ζ2 |
∫ τ+vϵ2

τ
δ2tRtdw

H
t |4

≤ cv3ϵ6|τ5−8H − (τ + vϵ2)5−8H |

≤ cϵ6(v1 − v2)
3τ4−8Hϵ2(v1 − v2)

≤ c(v1 − v2)
4ϵ8

for some constant c > 0 depending on H,T and Θ. Let us now estimate

I2 = Eβ2,ζ2 |
∫ τ

0
δ2tRtdw

H
t |4.

Note that

I2 ≡ Eβ2,ζ2 |
∫ τ

0
δ2tRtdw

H
t |4

= Eβ2,ζ2 |
∫ τ

0
δ2tRtλ

−1
H (2− 2H)t1−2Hdt|4

≤ cτ3
∫ τ

0
Eβ2,ζ2 [δ

8
tR

4
t ]t

4−8Hdt

= cτ3
∫ τ

0
Eβ1,ζ1 [δ

8
t ]t

4−8Hdt

≤ cτ8−8H sup
θ,τ,t

Eθ,τ [δ
8
t ]

≤ cτ8−8Hϵ8(u2 − u1)
8

≤ cϵ8(u2 − u1)
8

17



since

δt = Bt(θ + ϵu1, x)−Bt(θ + ϵu2, x)

on the interval [0, τ ] and the condition (A.6) holds. Furthermore,

I3 ≡ Eβ2,ζ2 |
∫ T

τ+ϵ2v
δ2tRtdw

H
t |4

= Eβ2,ζ2 |
∫ T

τ+ϵ2v
δ2tRtλ

−1
H (2− 2H)t1−2Hdt|4

≤ c

∫ T

τ+ϵ2v
Eβ2,ζ2 [δ

8
tR

4
t ]t

4−8Hdt

= c

∫ T

τ+ϵ2v
Eβ1,ζ1 [δ

8
t ]t

4−8Hdt

≤ c sup
θ,τ,t

Eθ,τ [δ
8
t ]

≤ cϵ8(u2 − u1)
8

by (A.6) since

δt = Ct(θ + ϵu1, x)− Ct(θ + ϵu2, x)

on the interval [τ + ϵ2v, T ] and the condition (A.6) holds

Let us now consider estimation of the term

Eβ2,ζ2 |
∫ T

0
δtRtdM

H
t |4.

Note that

Eβ2,ζ2 |
∫ T

0
δtRtdM

H
t |4 ≤ c Eβ2,ζ2(|

∫ τ

0
δtRtdM

H
t +

∫ T

τ+ϵ2v
δtRtdM

H
t |4)]

+cEβ2,ζ2(|
∫ τ+ϵ2v

τ
δtRtdM

H
t |4).

Let

I ′1 ≡ Eβ2,ζ2

∣∣∣∣∣
∫ τ+vϵ2

τ
δ2tRtdM

H
t

∣∣∣∣∣
4

.

Then

I ′1 ≡ Eβ2,ζ2

∣∣∣∣∣
∫ τ+vϵ2

τ
δ2tRtdM

H
t

∣∣∣∣∣
4
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≤ c(wH
τ+ϵ2v − wH

τ )

∫ τ+vϵ2

τ
Eβ2,ζ2 [δtRt]

4dwH
t

≤ c(wH
τ+ϵ2v − wH

τ )

∫ τ+vϵ2

τ
Eβ2,ζ2 [δtRt]

4λ−1
H (2− 2H)t1−2Hdt

≤ c[(τ + ϵ2v)2−2H − τ2−2H ]

∫ τ+vϵ2

τ
Eβ1,ζ1 [δt]

4t1−2Hdt

≤ c[(τ + ϵ2v)2−2H − τ2−2H ]2

≤ c(v1 − v2)
2ϵ4

by Lemma 5.3 in view of the condition (A.4) . Similarly

I ′2 ≡ Eβ2,ζ2

∣∣∣∣∫ τ

0
δ2tRtdM

H
t

∣∣∣∣4
≤ cwH

τ

∫ τ

0
Eβ2,ζ2 [δtRt]

4dwH
t

≤ cwH
τ

∫ τ

0
Eβ2,ζ2 [δtRt]

4λ−1
H (2− 2H)t1−2Hdt

≤ cτ2−2H
∫ τ

0
Eβ1,ζ1 [δt]

4t1−2Hdt

≤ c(u1 − u2)
4ϵ4

by Lemma 5.3 in view of the condition (A.6) and

I ′3 ≡ Eβ2,ζ2

∣∣∣∣∣
∫ T

τ+ϵ2v
δ2tRtdM

H
t

∣∣∣∣∣
4

≤ c(wH
T − wH

τ+ϵ2v)

∫ T

τ+ϵ2v
Eβ2,ζ2 [δtRt]

4dwH
t

≤ c(wH
T − wH

τ+ϵ2v)

∫ T

τ+ϵ2v
Eβ2,ζ2 [δtRt]

4λ−1
H (2− 2H)t1−2Hdt

≤ c(T 2−2H − (τ + ϵ2v)2−2H)

∫ T

τ+ϵ2v
Eβ1,ζ1 [δt]

4t1−2Hdt

≤ c(u1 − u2)
4ϵ4.

by Lemma 5.3 in view of the condition (A.6). Combining the above estimates, we obtain that

sup
|ui|≤R,|vi|≤R

[(u1 − u2)
4 + (v1 − v2)

2]−1Eθ,τ |Γ1/4
ϵ (u2, v2)− Γ1/4

ϵ (u1, v1)|4 < c <∞

which proves the tightness from results in Prakasa Rao [28] or Neuhaus [22].
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As a consequence of the Lemma 5.4, it follows that the family of probability measures

generated by the processes {Γ
1
4
ϵ (u, v), (u, v) ∈ Kθ×τ} on CKθ×τ

with uniform topology is

tight from the results in Billingsley [2] (cf. Prakasa Rao [27, 28]) and hence the family of

probability measures generated by the processes {Lϵ(u, v), (u, v) ∈ Kθ×τ} on CKθ×τ
is tight.

Lemmas 5.1 and 5.4 together imply that that the family of probability measures generated

by the processes {Lϵ(u, v), (u, v) ∈ Kθ×τ} on CKθ×τ
converge weakly to the probability

measure generated by the processes {L0(u, v), (u, v) ∈ Kθ×τ} on CKθ×τ
from the general

theory of weak convergence of probability measures on complete separable metric spaces(cf.

Billingsley [2], Parthasarathy [25], Prakasa Rao [27] and Ibragimov and Khasminskii [12]).

This completes the proof of Theorem 4.1.

It remains to show that the maximum likelihood estimator (θ̂ϵ, τ̂ϵ) will lie in a compact

set K with probability tending to one as ϵ→ 0.

The following maximal inequality is proved in Lemma 5.6 in Mishra and Prakasa Rao

[21] using the Slepian’s lemma (cf. Leadbetter et al. [18] and Matsui and Shieh [20]). We

will use it in the sequel.

Lemma 5.5: For any λ > 0,

E[exp{λ max
0≤t≤T

|WH
t |}] ≤ 1 + λ

√
2πT 2H exp{λ

2T 2H

2
}.

We now apply Lemma 5.5 to get the following result.

Lemma 5.6: Suppose the conditions (A.1) to (A.6) hold. Let Γϵ(u, v) = exp{Lϵ(u, v)}, u, v ∈
R. Then, for any compact set K ⊂ [0, T ]×Θ, and for any 0 < p < 1, there exists a positive

constant C such that

sup
(θ,τ)∈K

Eθ,τ [(Γϵ(u, v))
p] ≤ e−C g(u,v)(5. 5)

for all u, v where g(u, v) = k1|u|α + k2|v|β for some k1 > 0 and k2 > 0.

Proof: Now, for any 0 < p < 1, we will now estimate Eθ,τ (Γϵ(u, v))
p. For convenience,

let u ∈ R and v > 0 and let

F1 ≡
∫ T

0
∆tdM

H
t
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and

F2 ≡
∫ T

0
∆2

tdw
H
t .

Let q be such that p2 < q < p. Then

Eθ,τ [(Γϵ(u, v))
p] = Eτ [exp{

p

ϵ
F1 −

p

2ϵ2
F2}]

= Eτ [exp{
p

ϵ
F1 −

q

2ϵ2
F2 −

(p− q)

2ϵ2
F2}].

Let

G1 = exp{−(p− q)

2ϵ2
F2}

and

G2 = exp{p
ϵ
F1 −

q

2ϵ2
F2}.

Then

Eθ,τ [(Γϵ(u, v))
p] = Eθ,τ [G1G2]

≤ (Eθ,τ [G
p1
1 ])1/p1(Eθ,τ [G

p2
2 ])1/p2

by the Holder inequality for any p1 and p2 such that p2 > 1 and 1
p1

+ 1
p2

= 1. Choose

p2 =
q
p2
> 1. Then p1 =

q
q−p2

. Observe that

Eθ,τ [G
p2
2 ] = Eθ,τ [exp{p2(

p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ,τ [exp{
q

p2
(
p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ,τ [exp{
1

ϵ

q

p
F1 −

1

2ϵ2
q2

p2
F2}].

The random variable, under the expectation sign in the last line, is the Radon-Nikodym

derivative of two probability measures which are absolutely continuous with respect to each

other by the Girsanov’s theorem for martingales. Hence the expectation is equal to one.

Hence

Eθ,τ [(Γϵ(u, v))
p] ≤ (E[exp{−p1(p− q)

2ϵ2
F2}])1/p1

= (E[exp{−γϵ−2F2}])1/p1 .
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where γ = q(p−q)
2(q−p2)

> 0. Let us now estimate Eθ,τ [e
−γϵ−2F2 ]. Applying the inequality

a2 ≥ b2 − 2|b(a− b)|,

it follows that

Eθ,τ [e
−γϵ−2F2 ] ≤ exp{−γϵ−2

∫ T

0
∆̄2

tdw
H
t } ×

×Eθ,τ [exp{2γϵ−2(

∫ T

0
(At(θ + ϵu, τ + ϵ2v,X)−At(θ + ϵu, τ + ϵ2v, x)|+

+|At(θ, τ,X)−At(θ, τ, x)|)|At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)|dwH
t }].

We now get an upper bound on the term under the expectation sign on the right side of the

above inequality. Observe that there exists a a constant L > 0, such that,∫ T

0
[At(θ, τ,X)−At(θ, τ, x)]

2 dwH
t

≤ L2[

∫ T

0
sup
0≤s≤t

|Xs − xs|2 dwH
t ]

≤ L2 sup
0≤t≤T

|Xt − xt|2[
∫ T

0
dwH

t ]

≤ L2ϵ2e2LT [

∫ T

0
dwH

t ] sup
0≤t≤T

|WH
t |2 (by Lemma 4.0)

≤ Cϵ2L2e2LTT 2−2H sup
0≤t≤T

|WH
t |2.

for some constant C > 0 possibly depending on T,H and Θ. Therefore, under the condition

(A.5), for any τ ′ ∈ [t1, t2], and θ ∈ Θ, an application of the Cauchy-Schwarz inequality implies

that

sup
t1≤τ,τ ′≤t2,θ,θ′∈Θ

[

∫ T

0
|At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)||At(θ

′, τ ′, X)−At(θ
′, τ ′, x)|dwH

t ]2

≤ CL2ϵ4g(u, v)e2LTT 2−2H sup
0≤t≤T

|WH
t |2.

Hence

sup
t1≤τ,τ ′≤t2,θ,θ′∈Θ

[

∫ T

0
|At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)||At(θ

′, τ ′, X)−At(θ
′, τ ′, x)|dwH

t ]

≤ Cϵ2[g(u, v)]1/2 sup
0≤t≤T

|WH
t |.
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Therefore

sup
t1≤τ≤t2,θ∈Θ

Eθ,τ [exp{2γϵ−2(

∫ T

0
(|At(θ + ϵu, τ + ϵ2v,X)−At(θ + ϵu, τ + ϵ2v, x)|+

+|At(θ, τ,X)−At(θ, τ, x)|)|At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)|dwH
t }]

≤ Eθ,τ [exp{Cγ[g(u, v)]1/2 sup
0≤t≤T

|WH
t |}]

≤ 1 + γC[g(u, v)]1/2
√
2πT 2H exp{cγ

2T 2Hg(u, v)

2
}

by Lemma 5.5. Applying arguments similar to those in Lemma 2.4 in Kutoyants [16], we get

that

sup
(θ,τ)∈K

Eθ,τ [Γ
p
ϵ (u, v)] ≤ e−C g(u,v)

for some positive constant C > 0 depending on T,H and Θ.

An application of Lemma 5.5, proved earlier, shows that the maximum likelihood esti-

mator (θ̂ϵ, τ̂ϵ) will lie in the compact set K with probability tending to one as ϵ → 0 from

Theorem 5.1 in Chapter 1, p.42 of Ibragimov and Khasminskii [12] (cf. Kutoyants [15]).

We now give a proof of Theorem 3.1.

Proof of Theorem 3.1: Let CK denote the family of continuous functions defined on

a compact set K in R2. In view of Theorem 4.1, it follows that the family of probabil-

ity measures generated by the random fields {Lϵ(u, v), (u, v) ∈ K}, ϵ > 0 on CK converge

weakly to the probability measure generated by the random field {L0(u, v), (u, v) ∈ K}
on CK as ϵ → 0. Let (ûϵ, v̂ϵ) denote the infimum of the points of the maxima of the

random field {Lϵ(u, v), (u, v) ∈ K}, ϵ > 0 on CK . Let (u0, v0) denote the location of the

maxima of the process {L0(u, v), (u, v) ∈ K} on CK . The location (u0, v0) of the maxima

is unique almost surely by the property of Gaussian random fields. Since the random field

{Lϵ(u, v), (u, v) ∈ K}, ϵ > 0 on CK converge weakly to the random field {L0(u, v), (u, v) ∈ K}
on CK as ϵ → 0, by the continuous mapping theorem, it follows that the distribution of

(θ̂ϵ, τ̂ϵ) appropriately normalized converges in law to the distribution of (u0, v0) by the con-

tinuous mapping theorem (cf. Billingsley [2]). Lemma 5.6 implies that the random variable

(ûϵ, v̂ϵ) = (ϵ−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ)) ∈ K with probability tending to one as ϵ → 0. Applying

arguments similar to those in Theorem 10.1 in Chapter II, p.103 of Ibragimov and Khasmin-

skii [12] (cf. Prakasa Rao [26]), we obtain the following result. Let (θ, τ) be the true change
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point. As a consequence of the arguments and the discussion given above, it follows that the

random variable

(ûϵ, v̂ϵ) = (ϵ−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ))

converges in law to the distribution of the random variable (u0, v0), the location of the

maximum of the random field {L0(u, v),−∞ < u, v <∞}, as ϵ→ 0.

Remarks : We have assumed that the Hurst index H of the driving force for the fractional

diffusion process is known through out the earlier discussions. It would be interesting to

find out the asymptotic behaviour of a suitably transformed maximum likelihood estimator

(θ̂ϵ, τ̂ϵ) when H is unknown by using an estimator Ĥn of H and studying the asymptotic

behaviour of corresponding plug-in-estimator as ϵ→ 0..

Example : Suppose the process {Xt, 0 ≤ t ≤ T} satisfies the stochastic differential system

dX(t) = gθdt+ ϵdWH
t , 0 ≤ t ≤ τ

dX(t) = hθdt+ ϵdWH
t , τ < t ≤ T

where g and h are known constants with g ̸= h and θ ̸= 0.. This is the problem of estimation

of the change point for a fractional Brownian motion with a linear shift and a change in shift.

It can be seen that the drift functions St(θ, τ, x) and At(θ, τ, x) do not depend on x in this

example and the conditions (A.1)− (A.3) and (A.4)(i) hold. Note that, in this example, we

can directly check that

1

ϵ2

∫ τ+ϵ2v

τ
∆̄2

tdw
H
t = vλ−1

H J2
θ,ττ

1−2H + o(1)

where

J2
θ,τ = (g − h)2θ2

and

J∗
θ,τ = Jθ,τ

√
τ1−2Hλ−1

H .(5. 6)

This can be seen by checking that

d

dwH
t

∫ t

0
κH(t, s)ds = 1
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from results in Kleptsyna and Le Breton [13]. We now verify condition (A.5). Observe that

ϵ−2
∫ T

0
[At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)]

2dwH
t

= ϵ−2
∫ τ

0
[At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)]

2dwH
t

+ϵ−2
∫ τ+ϵ2v

τ
[At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)]

2dwH
t

+ϵ−2
∫ T

τ+ϵ2v
[At(θ + ϵu, τ + ϵ2v, x)−At(θ, τ, x)]

2dwH
t

= R1 +R2 +R3 (say).

Following the computations made earlier, it can be checked that

R1 = g2u2λ−1
H τ2−2H + o(1),

R2 = vJ∗2
θ,τ + o(1),

and

R3 = h2u2λ−1
H [T 2−2H − τ2−2H ] + o(1)

as ϵ → 0. It can be checked that the condition (A.5) holds with g(u, v) = c1|u|2 + c2|v| for
some positive constants c1 > 0 and c2 > 0. Note that Bt(θ, x) = gθ, 0 ≤ t ≤ τ and

Ct(θ, x) = hθ
d

dwH
t

∫ t

τ
κH(t, s)ds, τ < t ≤ T.

It is easy to see that the condition (A.6) holds for these functions Bt(θ, x) and Ct(θ, x). Let

(θ̂ϵ, τ̂ϵ) be the maximum likelihood estimator. An application of Theorem 3.1 implies that

the random variable (ϵ−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ)) has a limiting distribution as ϵ→ 0.
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